Long‐term remote sensing database, Walnut Gulch Experimental Watershed, Arizona, United States

[1] The USDA Agricultural Research Service, Southwest Watershed Research Center, Walnut Gulch Experimental Watershed (WGEW), is located in the San Pedro Valley of southeastern Arizona. It is one of the most highly instrumented semiarid experimental watersheds in the world and has one of the largest published collections of spectral imagery with coordinated ground observations. The WGEW Image and Ground Data Archive produced in 2006 (WIDGA06) is a collection of images from satellite- and aircraft-based sensors dating back to 1990 with ancillary ground-based measurements archived with each image. This report provides background information on the collection and archiving of this data set and contact information for obtaining copies of the image and data files. Many images are available in the University of Arizona, Arizona Regional Image Archive (ARIA) (http://aria.arizona.edu). Metadata are available via the U.S. Department of Agriculture, Agricultural Research Service, Southwest Watershed Research Center (SWRC) (http://www.tucson.ars.ag.gov/dap/).

[1]  Kenneth G. Renard,et al.  A brief background on the U.S. Department of Agriculture Agricultural Research Service Walnut Gulch Experimental Watershed , 2008 .

[2]  Ross Bryant,et al.  Refined empirical line approach for retrieving surface reflectance from EO-1 ALI images , 2003, IEEE Trans. Geosci. Remote. Sens..

[3]  M. S. Moran,et al.  Optical‐microwave synergy for estimating surface sensible heat flux over a semi‐arid rangeland , 1997 .

[4]  Stuart E. Marsh,et al.  Informing the elk debate: applying NASA Earth Observing System (EOS) data to natural resource management conflicts in the western states , 2001, IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217).

[5]  Colonia development and land use change in Ambos Nogales, United States-Mexican border , 2006 .

[6]  R. Bryant,et al.  Data continuity of Earth Observing 1 (EO-1) Advanced Land I satellite imager (ALI) and Landsat TM and ETM+ , 2003, IEEE Trans. Geosci. Remote. Sens..

[7]  Thomas J. Jackson,et al.  Mapping surface roughness and soil moisture using multi-angle radar imagery without ancillary data , 2008 .

[8]  M. S. Moran,et al.  Assessing vegetation change temporally and spatially in southeastern Arizona , 2008 .

[9]  M. S. Moran,et al.  Long‐term meteorological and soil hydrology database, Walnut Gulch Experimental Watershed, Arizona, United States , 2008 .

[10]  T. Jackson,et al.  Temporal persistence and stability of surface soil moisture in a semi-arid watershed , 2008 .

[11]  William E. Emmerich,et al.  Long‐term carbon dioxide and water flux database, Walnut Gulch Experimental Watershed, Arizona, United States , 2008 .

[12]  Mary H. Nichols,et al.  Long‐term runoff database, Walnut Gulch Experimental Watershed, Arizona, United States , 2008 .

[13]  M. S. Moran,et al.  Temporal and spatial changes in grassland transpiration detected using Landsat TM and ETM+ imagery , 2003 .

[14]  David C. Goodrich,et al.  Preface paper to the Semi-Arid Land-Surface-Atmosphere (SALSA) Program special issue , 2000 .

[15]  Thomas J. Jackson,et al.  Aircraft based soil moisture retrievals under mixed vegetation and topographic conditions , 2008 .

[16]  Mary H. Nichols,et al.  Southwest Watershed Research Center Data Access Project , 2008 .

[17]  Jiaguo Qi,et al.  Soil moisture estimation in a semiarid rangeland using ERS-2 and TM imagery , 2004 .

[18]  Vegetation data, Walnut Gulch Experimental Watershed, Arizona, United States , 2008 .

[19]  Mary H. Nichols,et al.  Geographic information systems database, Walnut Gulch Experimental Watershed, Arizona, United States , 2008 .

[20]  Stuart E. Marsh,et al.  Characterizing the spatial structure of endangered species habitat using geostatistical analysis of IKONOS imagery , 2005 .

[21]  M. Ramsey,et al.  Thermal infrared data analyses of Meteor Crater, Arizona: Implications for Mars spaceborne data from the Thermal Emission Imaging System , 2006 .

[22]  Joshua R. Smith,et al.  Long‐term precipitation database, Walnut Gulch Experimental Watershed, Arizona, United States , 2008 .

[23]  M. Nichols,et al.  Sediment database, Walnut Gulch Experimental Watershed, Arizona, United States , 2008 .

[24]  David C. Goodrich,et al.  Spatial interpolation of precipitation in a dense gauge network for monsoon storm events in the southwestern United States , 2008 .

[25]  M. S. Moran,et al.  Coupling a grassland ecosystem model with Landsat imagery for a 10-year simulation of carbon and water budgets , 2001 .

[26]  John A. Kupfer,et al.  Sensitivity of landscape metrics to classification scheme , 2006 .

[27]  M. S. Moran,et al.  Comparison of four models to determine surface soil moisture from C‐band radar imagery in a sparsely vegetated semiarid landscape , 2006 .

[28]  J. Qia,et al.  Spatial and temporal dynamics of vegetation in the San Pedro River basin area , 2000 .

[29]  P. Slater,et al.  Improved evaluation of optical depth components from langley plot data , 1990 .

[30]  M. S. Moran,et al.  Spatial and temporal dynamics of vegetation in the San Pedro River basin area , 2000 .

[31]  M. S. Moran,et al.  Combining the Penman-Monteith equation with measurements of surface temperature and reflectance to estimate evaporation rates of semiarid grassland , 1996 .

[32]  Praveen Kumar,et al.  A data mining approach for understanding topographic control on climate-induced inter-annual vegetation variability over the United States , 2005 .

[33]  Thomas J. Jackson,et al.  Introduction to Soil Moisture Experiments 2004 (SMEX04) Special Issue , 2008 .

[34]  M. S. Moran,et al.  Integration of remote sensing and hydrologic modeling through multi-disciplinary semiarid field campaigns: Moonsoon 1990, Walnut Gulch 1992, and SALSA-MEX , 1994 .

[35]  M. S. Moran,et al.  Soil moisture evaluation using multi-temporal synthetic aperture radar (SAR) in semiarid rangeland , 2000 .

[36]  Thomas J. Jackson,et al.  Vegetation water content during SMEX04 from ground data and Landsat 5 Thematic Mapper imagery , 2008 .

[37]  A. Comrie,et al.  Integrating remote sensing and local vegetation information for a high-resolution biogenic emissions inventory--application to an urbanized, semiarid region. , 2000, Journal of the Air & Waste Management Association.

[38]  G. Guyot,et al.  Physical measurements and signatures in remote sensing , 1992 .

[39]  M. S. Moran,et al.  The scaling characteristics of remotely-sensed variables for sparsely-vegetated heterogeneous landscapes , 1997 .

[40]  William P. Kustas,et al.  Preface [to special section on Monsoon '90 Multidisciplinary Experiment] , 1994 .

[41]  Ross Bryant,et al.  Measuring Surface Roughness Height to Parameterize Radar Backscatter Models for Retrieval of Surface Soil Moisture , 2007, IEEE Geoscience and Remote Sensing Letters.