C2H5OH sensing characteristics of various Co3O4 nanostructures prepared by solvothermal reaction

[1]  In-Sung Hwang,et al.  Glucose-mediated hydrothermal synthesis and gas sensing characteristics of WO3 hollow microspheres , 2009 .

[2]  M. Haruta,et al.  Low-Temperature Oxidation of CO Catalyzed by Co3O4 Nanorods. , 2009 .

[3]  J. H. Lee,et al.  Gas sensors using hierarchical and hollow oxide nanostructures: Overview , 2009 .

[4]  K. Choi,et al.  Enhanced CO sensing characteristics of hierarchical and hollow In2O3 microspheres , 2009 .

[5]  Wenjie Shen,et al.  Low-temperature oxidation of CO catalysed by Co3O4 nanorods , 2009, Nature.

[6]  Jiaqiang Xu,et al.  SnO2 nanorods and hollow spheres: Controlled synthesis and gas sensing properties , 2009 .

[7]  Chueh-Yang Liu,et al.  Tunable interconnectivity of mesostructured cobalt oxide materials for sensing applications , 2009 .

[8]  Chueh-Yang Liu,et al.  Fabrication of Mesostructured Cobalt Oxide Sensor and Its Application for CO Detector , 2009 .

[9]  Zhi-xuan Cheng,et al.  Indium Oxide with Novel Morphology: Synthesis and Application in C2H5OH Gas Sensing , 2009 .

[10]  Xiaoping Shen,et al.  Solvothermal synthesis and gas-sensing performance of Co3O4 hollow nanospheres , 2009 .

[11]  Yong Jia,et al.  Novel Single-Crystalline Hierarchical Structured ZnO Nanorods Fabricated via a Wet-Chemical Route: Combined High Gas Sensing Performance with Enhanced Optical Properties , 2009 .

[12]  S. Akbar,et al.  Highly sensitive and ultra-fast responding gas sensors using self-assembled hierarchical SnO2 spheres , 2009 .

[13]  Kyung Soo Park,et al.  Gas sensing properties of defect-controlled ZnO-nanowire gas sensor , 2008 .

[14]  In-Sung Hwang,et al.  CuO nanowire gas sensors for air quality control in automotive cabin , 2008 .

[15]  B. Geng,et al.  A facile coordination compound precursor route to controlled synthesis of Co3O4 nanostructures and their room-temperature gas sensing properties , 2008 .

[16]  Udo Weimar,et al.  Investigations of conduction mechanism in Cr2O3 gas sensing thick films by ac impedance spectroscopy and work function changes measurements , 2008 .

[17]  Yuan Zhang,et al.  Uniform ZnO nanorods can be used to improve the response of ZnO gas sensor , 2008 .

[18]  L. Archer,et al.  Self‐Supported Formation of Needlelike Co3O4 Nanotubes and Their Application as Lithium‐Ion Battery Electrodes , 2008 .

[19]  W. S. Choi,et al.  Templated Synthesis of Porous Capsules with a Controllable Surface Morphology and their Application as Gas Sensors , 2007 .

[20]  M. More,et al.  Acetone vapour sensing characteristics of cobalt-doped SnO2 thin films , 2007 .

[21]  T. Wang,et al.  Surface accumulation conduction controlled sensing characteristic of p-type CuO nanorods induced by oxygen adsorption , 2007 .

[22]  Seong‐Hyeon Hong,et al.  CO sensing performance in micro-arc oxidized TiO2 films for air quality control , 2006 .

[23]  Jinying Yuan,et al.  Fabrication and Sensing Behavior of Cr2O3 Nanofibers via In situ Gelation and Electrospinning , 2006 .

[24]  D. Y. Kim,et al.  Ultrasensitive chemiresistors based on electrospun TiO2 nanofibers. , 2006, Nano letters.

[25]  L. Wan,et al.  Hierarchically structured cobalt oxide (Co3O4): the morphology control and its potential in sensors. , 2006, The journal of physical chemistry. B.

[26]  J. Hagen Heterogeneous Catalysis: Fundamentals , 2006 .

[27]  Shihua Wu,et al.  Synthesis, characterization and gas sensing properties of undoped and Co-doped γ-Fe2O3-based gas sensors , 2006 .

[28]  Qing Peng,et al.  Nearly Monodisperse Cu2O and CuO Nanospheres: Preparation and Applications for Sensitive Gas Sensors , 2006 .

[29]  Alessandro Martucci,et al.  Gas sensing properties of nanocrystalline NiO and Co3O4 in porous silica sol–gel films , 2005 .

[30]  Ralf Moos,et al.  Hydrocarbon sensing with thick and thin film p-type conducting perovskite materials , 2005 .

[31]  Y. Shimizu,et al.  Preparation of large mesoporous SnO2 powder for gas sensor application , 2005 .

[32]  Noboru Yamazoe,et al.  Toward innovations of gas sensor technology , 2005 .

[33]  Kengo Shimanoe,et al.  Sensing properties of Au-loaded SnO2–Co3O4 composites to CO and H2 , 2005 .

[34]  Lei Xu,et al.  Co3O4 Nanomaterials in Lithium‐Ion Batteries and Gas Sensors , 2005 .

[35]  Jun Chen,et al.  α‐Fe2O3 Nanotubes in Gas Sensor and Lithium‐Ion Battery Applications , 2005 .

[36]  Chenglu Lin,et al.  Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors , 2004 .

[37]  Kengo Shimanoe,et al.  Sensing properties of SnO2–Co3O4 composites to CO and H2 , 2004 .

[38]  C. Yeh,et al.  Nanogold on powdered cobalt oxide for carbon monoxide sensor , 2003 .

[39]  I. Eisele,et al.  Cobalt oxide based gas sensors on silicon substrate for operation at low temperatures , 2003 .

[40]  Martin Moskovits,et al.  Detection of CO and O2 Using Tin Oxide Nanowire Sensors , 2003 .

[41]  Craig A. Grimes,et al.  Extreme Changes in the Electrical Resistance of Titania Nanotubes with Hydrogen Exposure , 2003 .

[42]  E. Fridell,et al.  On the Catalytic Activity of Co3O4 in Low-Temperature CO Oxidation , 2002 .

[43]  Y. Yoon,et al.  Enhancement of CO sensitivity of indium oxide-based semiconductor gas sensor through ultra-thin cobalt adsorption , 2001 .

[44]  Soon-Don Choi,et al.  Co3O4-based isobutane sensor operating at low temperatures , 2001 .

[45]  Koji Moriya,et al.  Mechanism of sensitivity promotion in CO sensor using indium oxide and cobalt oxide , 2000 .

[46]  Makoto Egashira,et al.  Basic Aspects and Challenges of Semiconductor Gas Sensors , 1999 .

[47]  N. Bârsan,et al.  Grain size control in nanocrystalline In2O3 semiconductor gas sensors , 1997 .

[48]  N. Yamazoe,et al.  Highly Selective CO Sensor Using Indium Oxide Doubly Promoted by Cobalt Oxide and Gold , 1997 .

[49]  Norio Miura,et al.  Gold-Loaded Tungsten Oxide Sensor for Detection of Ammonia in Air. , 1992 .

[50]  Chao-Nan Xu,et al.  Grain size effects on gas sensitivity of porous SnO2-based elements , 1991 .