Konrad-zuse-zentrum F ¨ Ur Informationstechnik Berlin Enumeration and Random Realization of Triangulated Surfaces Enumeration and Random Realization of Triangulated Surfaces
暂无分享,去创建一个
[1] S. Drake,et al. Galileo's Discovery of the Parabolic Trajectory , 1975 .
[2] Lukas Fins hiy,et al. Generation of Oriented Matroids , 2002 .
[3] Amos Altshuler. Combinatorial 3-Manifolds with Few Vertices , 1974, J. Comb. Theory, Ser. A.
[4] E. Steinitz,et al. Vorlesungen über die Theorie der Polyeder unter Einfluss der Elemente der Topologie , 1934 .
[5] S. Hougardy,et al. Surface realization with the intersection edge functional , 2006, math/0608538.
[6] P. J. Heawood. Map-Colour Theorem , 1949 .
[7] K. Brown,et al. Graduate Texts in Mathematics , 1982 .
[8] Peter Schuchert,et al. Neighborly 2-Manifolds with 12 Vertices , 1996, J. Comb. Theory, Ser. A.
[9] Jorge Nuno Silva,et al. Mathematical Games , 1959, Nature.
[10] F. Lutz,et al. Triangulated Manifolds with Few Vertices: Vertex-Transitive Triangulations I , 2005, math/0506520.
[11] W. T. Tutte,et al. A Census of Planar Triangulations , 1962, Canadian Journal of Mathematics.
[12] G. Ziegler. Lectures on Polytopes , 1994 .
[13] Ph. Furtwängler,et al. Encyklopädie der Mathematischen Wissenschaften mit Einschluss ihrer Anwendungen: Des Sechsten Bandes Erster Teil Geodäsie und Geophysik , 1906 .
[15] A maximally symmetric polyhedron of genus 3 with 10 vertices , 1987 .
[16] G. Ringel,et al. Minimal triangulations on orientable surfaces , 1980 .
[17] António Guedes de Oliveira,et al. On the Generation of Oriented Matroids , 2000, Discret. Comput. Geom..
[18] Thom Sulanke. Irreducible triangulations of low genus surfaces , 2006 .
[19] Jürgen Bokowski,et al. A polyhedron of genus 4 with minimal number of vertices and maximal symmetry , 1989 .
[20] D. Grace. Computer search for non-isomorphic convex polyhedra. , 1965 .
[21] B. Sturmfels. Computational Synthetic Geometry , 1989 .
[22] David W. Barnette,et al. Generating the triangulations of the projective plane , 1982, J. Comb. Theory, Ser. B.
[23] F. Enriques,et al. Encyklopädie der Mathematischen Wissenschaften mit Einschluss ihrer Anwendungen: Dritter Band: Geometrie , 1910 .
[24] Frank H. Lutz,et al. Isomorphism-free lexicographic enumeration of triangulated surfaces and 3-manifolds , 2006, Eur. J. Comb..
[25] D. Barnette,et al. All 2-manifolds have finitely many minimal triangulations , 1989 .
[26] Amos Altshuler,et al. An enumeration of combinatorial 3-manifolds with nine vertices , 1976, Discret. Math..
[27] S. Lawrencenko. Irreducible triangulations of a torus , 1987 .
[28] Amos Altshuler,et al. Neighborly 4-Polytopes with 9 Vertices , 1973, J. Comb. Theory, Ser. A.
[29] Wolfgang Kühnel,et al. Neighborly combinatorial 3-manifolds with dihedral automorphism group , 1985 .
[30] Lars Schewe. Satisfiability Problems in Discrete Geometry , 2007 .
[31] G. C. Shephard,et al. Convex Polytopes , 1969, The Mathematical Gazette.
[32] G. Ringel,et al. Wie man die geschlossenen nichtorientierbaren Flächen in möglichst wenig Dreiecke zerlegen kann , 1955 .
[33] Jürgen Bokowski. On Heuristic Methods for Finding Realizations of Surfaces , 2008 .
[34] Thom Sulanke. Generating irreducible triangulations of surfaces , 2006 .
[35] Seiya Negami,et al. Irreducible Triangulations of the Klein Bottle , 1997, J. Comb. Theory, Ser. B.
[36] Thom Sulanke. Note on the irreducible triangulations of the Klein bottle , 2006, J. Comb. Theory, Ser. B.
[37] S. Fisk,et al. Generations of triangulations of the sphere , 1967 .
[38] Basudeb Datta,et al. Two-dimensional weak pseudomanifolds on eight vertices , 2002 .
[40] Dan Archdeacon,et al. How to Exhibit Toroidal Maps in Space , 2007, Discret. Comput. Geom..