A Riemannian inexact Newton-CG method for constructing a nonnegative matrix with prescribed realizable spectrum
暂无分享,去创建一个
[1] T. Raghavan,et al. Nonnegative Matrices and Applications , 1997 .
[2] Matthew M. Lin. An algorithm for constructing nonnegative matrices with prescribed real eigenvalues , 2015, Appl. Math. Comput..
[3] Steven Thomas Smith,et al. Optimization Techniques on Riemannian Manifolds , 2014, ArXiv.
[4] TENG-TENG YAO,et al. A Riemannian Fletcher-Reeves Conjugate Gradient Method for Doubly Stochastic Inverse Eigenvalue Problems , 2016, SIAM J. Matrix Anal. Appl..
[5] Hazel Perfect,et al. Methods of constructing certain stochastic matrices. II , 1953 .
[6] Kenneth R. Driessel,et al. Constructing symmetric nonnegative matrices with prescribed eigenvalues by differential equations , 1991 .
[7] C. Baker. RIEMANNIAN MANIFOLD TRUST-REGION METHODS WITH APPLICATIONS TO EIGENPROBLEMS , 2008 .
[8] Moody T. Chu,et al. Gradient flow methods for matrix completion with prescribed eigenvalues , 2004 .
[9] Matthew M. Lin. Fast Recursive Algorithm For Constructing Nonnegative Matrices With Prescribed Real Eigenvalues , 2013 .
[10] Joseph P. Simonis,et al. Inexact Newton Methods Applied to Under-Determined Systems , 2006 .
[11] G. Golub,et al. Inverse Eigenvalue Problems: Theory, Algorithms, and Applications , 2005 .
[12] C. Marijuán,et al. A map of sufficient conditions for the real nonnegative inverse eigenvalue problem , 2007 .
[13] Shmuel Friedland,et al. On the eigenvalues of non-negative Jacobi matrices , 1979 .
[14] Moody T. Chu,et al. Inverse Eigenvalue Problems , 1998, SIAM Rev..
[15] Helena vSmigoc,et al. Connecting sufficient conditions for the Symmetric Nonnegative Inverse Eigenvalue Problem , 2015, 1501.06462.
[16] M. Fiedler. Eigenvalues of Nonnegative Symmetric Matrices , 1974 .
[17] Gene H. Golub,et al. Matrix computations , 1983 .
[18] Ricardo L. Soto,et al. Realizability criterion for the symmetric nonnegative inverse eigenvalue problem , 2006 .
[19] Mike Boyle,et al. The spectra of nonnegative matrices via symbolic dynamics , 1991 .
[20] Shufang Xu,et al. An Introduction to Inverse Algebraic Eigenvalue Problems , 1999 .
[21] Xiao-Qing Jin,et al. A Geometric Nonlinear Conjugate Gradient Method for Stochastic Inverse Eigenvalue Problems , 2016, SIAM J. Numer. Anal..
[22] George W. Soules. Constructing symmetric nonnegative matrices , 1983 .
[23] Xiao-Qing Jin,et al. A Riemannian Newton Algorithm for Nonlinear Eigenvalue Problems , 2015, SIAM J. Matrix Anal. Appl..
[24] Moody T. Chu,et al. A Numerical Method for the Inverse Stochastic Spectrum Problem , 1998, SIAM J. Matrix Anal. Appl..
[25] Charles R. Johnson,et al. Possible spectra of totally positive matrices , 1984 .
[26] Robert Reams,et al. An inequality for nonnegative matrices and the inverse eigenvalue problem , 1996 .
[27] G. Golub,et al. Structured inverse eigenvalue problems , 2002, Acta Numerica.
[28] John E. Dennis,et al. Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.
[29] Patricia D. Egleston. Nonnegative Matrices with Prescribed Spectra , 2001 .
[30] Ricardo L. Soto,et al. Existence and construction of nonnegative matrices with prescribed spectrum , 2003 .
[31] D. Bernstein. Matrix Mathematics: Theory, Facts, and Formulas , 2009 .
[32] Ricardo L. Soto,et al. A family of realizability criteria for the real and symmetric nonnegative inverse eigenvalue problem , 2013, Numer. Linear Algebra Appl..
[33] Robert E. Mahony,et al. Optimization Algorithms on Matrix Manifolds , 2007 .
[34] Homer F. Walker,et al. Globally Convergent Inexact Newton Methods , 1994, SIAM J. Optim..
[35] Robert Orsi. Numerical Methods for Solving Inverse Eigenvalue Problems for Nonnegative Matrices , 2006, SIAM J. Matrix Anal. Appl..
[36] G. N. de Oliveira. The university of Coimbra mini-conference on linear algebra and appplications , 1983 .
[37] Robert J. Plemmons,et al. Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.
[38] Alberto Borobia,et al. The real nonnegative inverse eigenvalue problem is NP-hard , 2016, ArXiv.
[39] Charles R. Johnson,et al. Perron spectratopes and the real nonnegative inverse eigenvalue problem , 2015, 1508.07400.
[40] Pietro Paparella. Realizing Suleimanova-type Spectra via Permutative Matrices , 2016 .
[41] Sivaram K. Narayan,et al. The nonnegative inverse eigenvalue problem , 2004 .
[42] Thomas J. Laffey,et al. Nonnegative realization of spectra having negative real parts , 2006 .
[43] D. Luenberger. Optimization by Vector Space Methods , 1968 .
[44] Raphael Loewy,et al. A note on an inverse problem for nonnegative matrices , 1978 .
[45] Xi Chen,et al. Isospectral flow method for nonnegative inverse eigenvalue problem with prescribed structure , 2011, J. Comput. Appl. Math..
[46] P. Priouret,et al. Newton's method on Riemannian manifolds: covariant alpha theory , 2002, math/0209096.
[47] E. Seneta. Non-negative Matrices and Markov Chains , 2008 .