A Riemannian inexact Newton-CG method for constructing a nonnegative matrix with prescribed realizable spectrum

This paper is concerned with the inverse eigenvalue problem of finding a nonnegative matrix such that it has the prescribed realizable spectrum. We reformulate the inverse eigenvalue problem as an under-determined constrained nonlinear matrix equation over several matrix manifolds. Then we propose a Riemannian inexact Newton-CG method for solving the nonlinear matrix equation. The global and quadratic convergence of the proposed method is established under some assumptions. We also extend the proposed method to the case of prescribed entries. Finally, numerical experiments are reported to illustrate the efficiency of the proposed method.

[1]  T. Raghavan,et al.  Nonnegative Matrices and Applications , 1997 .

[2]  Matthew M. Lin An algorithm for constructing nonnegative matrices with prescribed real eigenvalues , 2015, Appl. Math. Comput..

[3]  Steven Thomas Smith,et al.  Optimization Techniques on Riemannian Manifolds , 2014, ArXiv.

[4]  TENG-TENG YAO,et al.  A Riemannian Fletcher-Reeves Conjugate Gradient Method for Doubly Stochastic Inverse Eigenvalue Problems , 2016, SIAM J. Matrix Anal. Appl..

[5]  Hazel Perfect,et al.  Methods of constructing certain stochastic matrices. II , 1953 .

[6]  Kenneth R. Driessel,et al.  Constructing symmetric nonnegative matrices with prescribed eigenvalues by differential equations , 1991 .

[7]  C. Baker RIEMANNIAN MANIFOLD TRUST-REGION METHODS WITH APPLICATIONS TO EIGENPROBLEMS , 2008 .

[8]  Moody T. Chu,et al.  Gradient flow methods for matrix completion with prescribed eigenvalues , 2004 .

[9]  Matthew M. Lin Fast Recursive Algorithm For Constructing Nonnegative Matrices With Prescribed Real Eigenvalues , 2013 .

[10]  Joseph P. Simonis,et al.  Inexact Newton Methods Applied to Under-Determined Systems , 2006 .

[11]  G. Golub,et al.  Inverse Eigenvalue Problems: Theory, Algorithms, and Applications , 2005 .

[12]  C. Marijuán,et al.  A map of sufficient conditions for the real nonnegative inverse eigenvalue problem , 2007 .

[13]  Shmuel Friedland,et al.  On the eigenvalues of non-negative Jacobi matrices , 1979 .

[14]  Moody T. Chu,et al.  Inverse Eigenvalue Problems , 1998, SIAM Rev..

[15]  Helena vSmigoc,et al.  Connecting sufficient conditions for the Symmetric Nonnegative Inverse Eigenvalue Problem , 2015, 1501.06462.

[16]  M. Fiedler Eigenvalues of Nonnegative Symmetric Matrices , 1974 .

[17]  Gene H. Golub,et al.  Matrix computations , 1983 .

[18]  Ricardo L. Soto,et al.  Realizability criterion for the symmetric nonnegative inverse eigenvalue problem , 2006 .

[19]  Mike Boyle,et al.  The spectra of nonnegative matrices via symbolic dynamics , 1991 .

[20]  Shufang Xu,et al.  An Introduction to Inverse Algebraic Eigenvalue Problems , 1999 .

[21]  Xiao-Qing Jin,et al.  A Geometric Nonlinear Conjugate Gradient Method for Stochastic Inverse Eigenvalue Problems , 2016, SIAM J. Numer. Anal..

[22]  George W. Soules Constructing symmetric nonnegative matrices , 1983 .

[23]  Xiao-Qing Jin,et al.  A Riemannian Newton Algorithm for Nonlinear Eigenvalue Problems , 2015, SIAM J. Matrix Anal. Appl..

[24]  Moody T. Chu,et al.  A Numerical Method for the Inverse Stochastic Spectrum Problem , 1998, SIAM J. Matrix Anal. Appl..

[25]  Charles R. Johnson,et al.  Possible spectra of totally positive matrices , 1984 .

[26]  Robert Reams,et al.  An inequality for nonnegative matrices and the inverse eigenvalue problem , 1996 .

[27]  G. Golub,et al.  Structured inverse eigenvalue problems , 2002, Acta Numerica.

[28]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[29]  Patricia D. Egleston Nonnegative Matrices with Prescribed Spectra , 2001 .

[30]  Ricardo L. Soto,et al.  Existence and construction of nonnegative matrices with prescribed spectrum , 2003 .

[31]  D. Bernstein Matrix Mathematics: Theory, Facts, and Formulas , 2009 .

[32]  Ricardo L. Soto,et al.  A family of realizability criteria for the real and symmetric nonnegative inverse eigenvalue problem , 2013, Numer. Linear Algebra Appl..

[33]  Robert E. Mahony,et al.  Optimization Algorithms on Matrix Manifolds , 2007 .

[34]  Homer F. Walker,et al.  Globally Convergent Inexact Newton Methods , 1994, SIAM J. Optim..

[35]  Robert Orsi Numerical Methods for Solving Inverse Eigenvalue Problems for Nonnegative Matrices , 2006, SIAM J. Matrix Anal. Appl..

[36]  G. N. de Oliveira The university of Coimbra mini-conference on linear algebra and appplications , 1983 .

[37]  Robert J. Plemmons,et al.  Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.

[38]  Alberto Borobia,et al.  The real nonnegative inverse eigenvalue problem is NP-hard , 2016, ArXiv.

[39]  Charles R. Johnson,et al.  Perron spectratopes and the real nonnegative inverse eigenvalue problem , 2015, 1508.07400.

[40]  Pietro Paparella Realizing Suleimanova-type Spectra via Permutative Matrices , 2016 .

[41]  Sivaram K. Narayan,et al.  The nonnegative inverse eigenvalue problem , 2004 .

[42]  Thomas J. Laffey,et al.  Nonnegative realization of spectra having negative real parts , 2006 .

[43]  D. Luenberger Optimization by Vector Space Methods , 1968 .

[44]  Raphael Loewy,et al.  A note on an inverse problem for nonnegative matrices , 1978 .

[45]  Xi Chen,et al.  Isospectral flow method for nonnegative inverse eigenvalue problem with prescribed structure , 2011, J. Comput. Appl. Math..

[46]  P. Priouret,et al.  Newton's method on Riemannian manifolds: covariant alpha theory , 2002, math/0209096.

[47]  E. Seneta Non-negative Matrices and Markov Chains , 2008 .