The Moment-SOS Hierarchy

The Moment-SOS hierarchy initially introduced in optimization in 2000, is based on the theory of the K-moment problem and its dual counterpart, polynomials that are positive on K. It turns out that this methodology can be also applied to solve problems with positivity constraints " f (x) $\ge$ 0 for all x $\in$ K " and/or linear constraints on Borel measures. Such problems can be viewed as specific instances of the " Generalized Problem of Moments " (GPM) whose list of important applications in various domains is endless. We describe this methodology and outline some of its applications in various domains.

[1]  Didier Henrion,et al.  Linear Conic Optimization for Inverse Optimal Control , 2014, SIAM J. Control. Optim..

[2]  Emmanuel J. Candès,et al.  Towards a Mathematical Theory of Super‐resolution , 2012, ArXiv.

[3]  C. Bachoc,et al.  New upper bounds for kissing numbers from semidefinite programming , 2006, math/0608426.

[4]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[5]  Jiawang Nie,et al.  Certifying convergence of Lasserre’s hierarchy via flat truncation , 2011, Math. Program..

[6]  Jean-Bernard Lasserre Computing Gaussian & exponential measures of semi-algebraic sets , 2017, Adv. Appl. Math..

[7]  J. Krivine,et al.  Anneaux préordonnés , 1964 .

[8]  Frank Vallentin,et al.  Computational Approaches to Lattice Packing and Covering Problems , 2006, Discret. Comput. Geom..

[9]  Didier Henrion,et al.  Approximate Volume and Integration for Basic Semialgebraic Sets , 2009, SIAM Rev..

[10]  David Steurer,et al.  Sum-of-squares proofs and the quest toward optimal algorithms , 2014, Electron. Colloquium Comput. Complex..

[11]  Subhash Khot,et al.  Hardness of Approximation , 2016, ICALP.

[12]  Jiawang Nie,et al.  The A-Truncated K -Moment Problem , 2012 .

[13]  Didier Henrion,et al.  Convex Computation of the Region of Attraction of Polynomial Control Systems , 2012, IEEE Transactions on Automatic Control.

[14]  Subhash Khot Inapproximability of NP-complete Problems, Discrete Fourier Analysis, and Geometry , 2011 .

[15]  Masakazu Muramatsu,et al.  Sums of Squares and Semidefinite Programming Relaxations for Polynomial Optimization Problems with Structured Sparsity , 2004 .

[16]  J. Lasserre,et al.  Optimisation globale et théorie des moments , 2000 .

[17]  Jean-Paul Laumond,et al.  Geometric and Numerical Foundations of Movements , 2017, Springer Tracts in Advanced Robotics.

[18]  Stefano Pironio,et al.  Convergent Relaxations of Polynomial Optimization Problems with Noncommuting Variables , 2009, SIAM J. Optim..

[19]  N. Shor Nondifferentiable Optimization and Polynomial Problems , 1998 .

[20]  Jean B. Lasserre Inverse polynomial optimization , 2011, IEEE Conference on Decision and Control and European Control Conference.

[21]  Pablo A. Parrilo,et al.  Semidefinite programming relaxations for semialgebraic problems , 2003, Math. Program..

[22]  Rekha R. Thomas,et al.  Algebraic and geometric methods in discrete optimization , 2003, Math. Program..

[23]  P. Parrilo Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization , 2000 .

[24]  Allan Gut,et al.  The Moment Problem , 2002, Encyclopedia of Special Functions: The Askey-Bateman Project.

[25]  J. Lasserre Bounds on measures satisfying moment conditions , 2002 .

[26]  Yurii Nesterov,et al.  Squared Functional Systems and Optimization Problems , 2000 .

[27]  Didier Henrion,et al.  Approximate Optimal Designs for Multivariate Polynomial Regression , 2017, The Annals of Statistics.

[28]  Emmanuel Trélat,et al.  Nonlinear Optimal Control via Occupation Measures and LMI-Relaxations , 2007, SIAM J. Control. Optim..

[29]  Dario Piga,et al.  Set-Membership Error-in-Variables Identification Through Convex Relaxation Techniques , 2012, IEEE Transactions on Automatic Control.

[30]  Didier Henrion,et al.  GloptiPoly 3: moments, optimization and semidefinite programming , 2007, Optim. Methods Softw..

[31]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[32]  A. Acín,et al.  A convergent hierarchy of semidefinite programs characterizing the set of quantum correlations , 2008, 0803.4290.

[33]  M. Laurent Sums of Squares, Moment Matrices and Optimization Over Polynomials , 2009 .

[34]  Bernard Mourrain,et al.  Sparse polynomial interpolation: compressed sensing, super resolution, or Prony? , 2017 .

[35]  Mario Sznaier,et al.  The Interplay Between Big Data and Sparsity in Systems Identification , 2017 .

[36]  Jean B. Lasserre,et al.  Tractable approximations of sets defined with quantifiers , 2014, Math. Program..

[37]  J. Lasserre Moments, Positive Polynomials And Their Applications , 2009 .

[38]  J. Lasserre An Introduction to Polynomial and Semi-Algebraic Optimization , 2015 .

[39]  Jiawang Nie,et al.  Optimality conditions and finite convergence of Lasserre’s hierarchy , 2012, Math. Program..

[40]  Monique Laurent,et al.  A Comparison of the Sherali-Adams, Lovász-Schrijver, and Lasserre Relaxations for 0-1 Programming , 2003, Math. Oper. Res..

[41]  Etienne de Klerk,et al.  Bound-Constrained Polynomial Optimization Using Only Elementary Calculations , 2015, Math. Oper. Res..

[42]  Ian A. Hiskens,et al.  Sparsity-Exploiting Moment-Based Relaxations of the Optimal Power Flow Problem , 2014, IEEE Transactions on Power Systems.

[43]  Jean B. Lasserre,et al.  Semidefinite Programming vs. LP Relaxations for Polynomial Programming , 2002, Math. Oper. Res..

[44]  Jean B. Lasserre,et al.  Convergent SDP-Relaxations in Polynomial Optimization with Sparsity , 2006, SIAM J. Optim..

[45]  H. Landau Moments in mathematics , 1987 .

[46]  Frank Vallentin,et al.  A semidefinite programming hierarchy for packing problems in discrete geometry , 2013, Math. Program..

[47]  Russ Tedrake,et al.  Stability Analysis and Control of Rigid-Body Systems With Impacts and Friction , 2016, IEEE Transactions on Automatic Control.

[48]  Emmanuel J. Cand Towards a Mathematical Theory of Super-Resolution , 2012 .

[49]  Didier Henrion,et al.  Exact Solutions to Super Resolution on Semi-Algebraic Domains in Higher Dimensions , 2015, IEEE Transactions on Information Theory.

[50]  Didier Henrion,et al.  Convergent relaxations of polynomial matrix inequalities and static output feedback , 2006, IEEE Transactions on Automatic Control.

[51]  Monique Laurent,et al.  Semidefinite Characterization and Computation of Zero-Dimensional Real Radical Ideals , 2008, Found. Comput. Math..

[52]  J. W. Helton,et al.  A positivstellensatz for non-commutative polynomials , 2004 .