Electrophysiological correlates of synchronous neural activity and attention: a short review.

Attentional selection implies preferential treatment of some sensory stimuli over others. This requires differential representation of attended and unattended stimuli. Most previous research has focused on pure rate codes for this representation but recent evidence indicates that a mixed code, involving both mean firing rate and temporal codes, may be employed. Of particular interest is a distinction of attended from unattended stimuli based on synchrony within neural populations. I review electrophysiological evidence at macroscopic, mesoscopic and microscopic spatial scales showing that the degree of synchronous activity varies with the attentional state of the perceiving organism.

[1]  Andrei Rozov,et al.  Polyamine-dependent facilitation of postsynaptic AMPA receptors counteracts paired-pulse depression , 1999, Nature.

[2]  E. Fetz,et al.  Oscillatory activity in sensorimotor cortex of awake monkeys: synchronization of local field potentials and relation to behavior. , 1996, Journal of neurophysiology.

[3]  E. Olivier,et al.  Coherent oscillations in monkey motor cortex and hand muscle EMG show task‐dependent modulation , 1997, The Journal of physiology.

[4]  K. H. Britten,et al.  Neuronal correlates of a perceptual decision , 1989, Nature.

[5]  Christof Koch,et al.  Control of Selective Visual Attention: Modeling the Where Pathway , 1995, NIPS.

[6]  W. Singer,et al.  Role of Reticular Activation in the Modulation of Intracortical Synchronization , 1996, Science.

[7]  C. Koch,et al.  Towards a neurobiological theory of consciousness , 1990 .

[8]  E. Fetz,et al.  Synchronization of neurons during local field potential oscillations in sensorimotor cortex of awake monkeys. , 1996, Journal of neurophysiology.

[9]  Peter König,et al.  Stimulus-Dependent Assembly Formation of Oscillatory Responses: I. Synchronization , 1991, Neural Computation.

[10]  R. Parasuraman The attentive brain , 1998 .

[11]  R N Lemon,et al.  Synchronization in monkey motor cortex during a precision grip task. I. Task-dependent modulation in single-unit synchrony. , 2001, Journal of neurophysiology.

[12]  Matthias M. Müller,et al.  Modulation of induced gamma band activity in the human EEG by attention and visual information processing. , 2000, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[13]  Derrick J. Parkhurst,et al.  Modeling the role of salience in the allocation of overt visual attention , 2002, Vision Research.

[14]  Thomas Euler,et al.  Dendritic processing , 2001, Current Opinion in Neurobiology.

[15]  J. Desmedt,et al.  Transient phase-locking of 40 Hz electrical oscillations in prefrontal and parietal human cortex reflects the process of conscious somatic perception , 1994, Neuroscience Letters.

[16]  S A Hillyard,et al.  Selective attention and the auditory vertex potential. I. Effects of stimulus delivery rate. , 1976, Electroencephalography and clinical neurophysiology.

[17]  Matthias M. Müller,et al.  Selective visual-spatial attention alters induced gamma band responses in the human EEG , 1999, Clinical Neurophysiology.

[18]  Idan Segev,et al.  Dendritic processing , 1998 .

[19]  N. Birbaumer,et al.  High-frequency brain activity: Its possible role in attention, perception and language processing , 1997, Progress in Neurobiology.

[20]  R. Desimone,et al.  Neural mechanisms of selective visual attention. , 1995, Annual review of neuroscience.

[21]  W. Singer,et al.  Visuomotor integration is associated with zero time-lag synchronization among cortical areas , 1997, Nature.

[22]  R. Desimone,et al.  Selective attention gates visual processing in the extrastriate cortex. , 1985, Science.

[23]  K. Hoffmann,et al.  Synchronization of Neuronal Activity during Stimulus Expectation in a Direction Discrimination Task , 1997, The Journal of Neuroscience.

[24]  J. Bouyer,et al.  Fast somato-parietal rhythms during combined focal attention and immobility in baboon and squirrel monkey. , 1979, Electroencephalography and clinical neurophysiology.

[25]  Selective attention and the auditory vertex potential. I - Effects of stimulus delivery rate. II - Effects of signal intensity and masking noise , 1976 .

[26]  R. Romo,et al.  Periodicity and Firing Rate As Candidate Neural Codes for the Frequency of Vibrotactile Stimuli , 2000, The Journal of Neuroscience.

[27]  Christof Koch,et al.  A model for the neuronal implementation of selective visual attention based on temporal correlation among neurons , 1994, Journal of Computational Neuroscience.

[28]  J. Driver,et al.  Crossmodal links in endogenous and exogenous spatial attention: evidence from event-related brain potential studies , 2001, Neuroscience & Biobehavioral Reviews.

[29]  K. O. Johnson,et al.  Sensory discrimination: neural processes preceding discrimination decision. , 1980, Journal of neurophysiology.

[30]  Annie Schmied,et al.  Selective enhancement of motoneurone short-term synchrony during an attention-demanding task , 2000, Experimental Brain Research.

[31]  S. Yantis,et al.  Visual attention: control, representation, and time course. , 1997, Annual review of psychology.

[32]  Andreas Keil,et al.  Functional correlates of macroscopic high-frequency brain activity in the human visual system , 2001, Neuroscience & Biobehavioral Reviews.

[33]  R. Eckhorn,et al.  Coherent oscillations: A mechanism of feature linking in the visual cortex? , 1988, Biological Cybernetics.

[34]  S N Davies,et al.  Paired‐pulse depression of monosynaptic GABA‐mediated inhibitory postsynaptic responses in rat hippocampus. , 1990, The Journal of physiology.

[35]  Sonja Grün,et al.  Dynamical changes and temporal precision of synchronized spiking activity in monkey motor cortex during movement preparation , 2000, Journal of Physiology-Paris.

[36]  Christoph von der Malsburg,et al.  The Correlation Theory of Brain Function , 1994 .

[37]  A. Wróbel,et al.  Beta activity: a carrier for visual attention. , 2000, Acta neurobiologiae experimentalis.

[38]  J. Deuchars,et al.  Single axon excitatory postsynaptic potentials in neocortical interneurons exhibit pronounced paired pulse facilitation , 1993, Neuroscience.

[39]  R. Reid,et al.  Synaptic Interactions between Thalamic Inputs to Simple Cells in Cat Visual Cortex , 2000, The Journal of Neuroscience.

[40]  Peter König,et al.  Stimulus-Dependent Assembly Formation of Oscillatory Responses: III. Learning , 1992, Neural Computation.

[41]  E. Fetz,et al.  Synaptic interactions mediating synchrony and oscillations in primate sensorimotor cortex , 2000, Journal of Physiology-Paris.

[42]  C. Koch,et al.  Some reflections on visual awareness. , 1990, Cold Spring Harbor symposia on quantitative biology.

[43]  C Braun,et al.  Gamma-band MEG activity to coherent motion depends on task-driven attention. , 1999, Neuroreport.

[44]  S S Hsiao,et al.  Effects of selective attention on spatial form processing in monkey primary and secondary somatosensory cortex. , 1993, Journal of neurophysiology.

[45]  Marius Usher,et al.  The Effect of Synchronized Inputs at the Single Neuron Level , 1994, Neural Computation.

[46]  J. Hyvärinen,et al.  Cortical neuronal mechanisms in flutter-vibration studied in unanesthetized monkeys. Neuronal periodicity and frequency discrimination. , 1969, Journal of neurophysiology.

[47]  I Shimoyama,et al.  Attention changes the peak latency of the visual gamma-band oscillation of the EEG. , 1999, Neuroreport.

[48]  S. Nelson,et al.  Temporal interactions in the cat visual system. I. Orientation- selective suppression in the visual cortex , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[49]  W. Singer,et al.  Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties , 1989, Nature.

[50]  E. Adrian,et al.  The impulses produced by sensory nerve‐endings , 1926 .

[51]  L. Adams,et al.  Synchronization of motor unit firing during different respiratory and postural tasks in human sternocleidomastoid muscle. , 1989, The Journal of physiology.

[52]  S. Treue Neural correlates of attention in primate visual cortex , 2001, Trends in Neurosciences.

[53]  H. Markram,et al.  The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[54]  P. König,et al.  Top-down processing mediated by interareal synchronization. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[55]  R. Frisina Subcortical neural coding mechanisms for auditory temporal processing , 2001, Hearing Research.

[56]  R. Desimone,et al.  Modulation of Oscillatory Neuronal Synchronization by Selective Visual Attention , 2001, Science.

[57]  G. Laurent,et al.  Impaired odour discrimination on desynchronization of odour-encoding neural assemblies , 1997, Nature.

[58]  Zhefeng Gong,et al.  An emergent mechanism of selective visual attention in Drosophila , 2000, Biological Cybernetics.

[59]  M. Hamon,et al.  Enhanced Cortical Extracellular Levels of Cholecystokinin-Like Material in a Model of Anticipation of Social Defeat in the Rat , 2001, The Journal of Neuroscience.

[60]  C. Koch,et al.  An oscillation-based model for the neuronal basis of attention , 1993, Vision Research.

[61]  V. Manahilov,et al.  Energy model for contrast detection: spatiotemporal characteristics of threshold vision , 1999, Biological Cybernetics.

[62]  E. Niebur,et al.  Growth patterns in the developing brain detected by using continuum mechanical tensor maps , 2022 .

[63]  R. Reid,et al.  Paired-spike interactions and synaptic efficacy of retinal inputs to the thalamus , 1998, Nature.

[64]  L. Paninski,et al.  Information about movement direction obtained from synchronous activity of motor cortical neurons. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[65]  X. Wang,et al.  Implications of All-or-None Synaptic Transmission and Short-Term Depression beyond Vesicle Depletion: A Computational Study , 2000, The Journal of Neuroscience.

[66]  J. Martinerie,et al.  The brainweb: Phase synchronization and large-scale integration , 2001, Nature Reviews Neuroscience.

[67]  J. Ko Sensory discrimination: neural processes preceding discrimination decision. , 1980 .

[68]  E. M. Pinches,et al.  The role of synchrony and oscillations in the motor output , 1999, Experimental Brain Research.

[69]  E. Fetz,et al.  Short-term synchronization of motor units in human extensor digitorum communis muscle: relation to contractile properties and voluntary control , 2004, Experimental Brain Research.

[70]  Cortical neuronal periodicities and frequency discrimination in the sense of flutter. , 1990, Cold Spring Harbor symposia on quantitative biology.

[71]  J. Bouyer,et al.  Fast fronto-parietal rhythms during combined focused attentive behaviour and immobility in cat: cortical and thalamic localizations. , 1981, Electroencephalography and clinical neurophysiology.

[72]  J. Donoghue,et al.  Neural discharge and local field potential oscillations in primate motor cortex during voluntary movements. , 1998, Journal of neurophysiology.

[73]  KochChristof,et al.  A Model of Saliency-Based Visual Attention for Rapid Scene Analysis , 1998 .

[74]  S Ullman,et al.  Shifts in selective visual attention: towards the underlying neural circuitry. , 1985, Human neurobiology.

[75]  Stephane A. Roy,et al.  Coincidence Detection or Temporal Integration? What the Neurons in Somatosensory Cortex Are Doing , 2001, The Journal of Neuroscience.

[76]  R. Knight,et al.  Mechanisms of human attention: event-related potentials and oscillations , 2001, Neuroscience & Biobehavioral Reviews.

[77]  H Sompolinsky,et al.  Global processing of visual stimuli in a neural network of coupled oscillators. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[78]  H. Berg Cold Spring Harbor Symposia on Quantitative Biology.: Vol. LII. Evolution of Catalytic Functions. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1987, ISBN 0-87969-054-2, xix + 955 pp., US $150.00. , 1989 .

[79]  A. Treisman,et al.  A feature-integration theory of attention , 1980, Cognitive Psychology.