Near-IR methane absorption in outer planet atmospheres: Improved models of temperature dependence and implications for Uranus cloud structure

[1]  John J. Remedios,et al.  Improved near-infrared methane band models and k-distribution parameters from 2000 to 9500 cm(-1) and implications for interpretation of outer planet spectra , 2006 .

[2]  Gang Li,et al.  The HITRAN 2008 molecular spectroscopic database , 2005 .

[3]  S. Calcutt,et al.  Methane absorption in the atmosphere of Jupiter from 1800 to 9500 cm−1 and implications for vertical cloud structure , 2005 .

[4]  G. Orton,et al.  Coordinated 1996 HST and IRTF Imaging of Neptune and Triton , 2001 .

[5]  A. Pickles A Stellar Spectral Flux Library: 1150–25000 Å , 1998 .

[6]  S. Calcutt,et al.  Calculated k distribution coefficients for hydrogen‐ and self‐broadened methane in the range 2000–9500 cm−1 from exponential sum fitting to band‐modelled spectra , 1996 .

[7]  L. Colina,et al.  The 0.12-2.5 micron Absolute Flux Distribution of the Sun for Comparison With Solar Analog Stars , 1996 .

[8]  M. E. Mickelson,et al.  The Abundances of Methane and Ortho/Para Hydrogen on Uranus and Neptune: Implications of New Laboratory 4-0 H2 Quadrupole Line Parameters , 1995 .

[9]  K. Strong,et al.  Spectral parameters of self- and hydrogen-broadened methane from 2000 to 9500 cm-1 for remote sounding of the atmosphere of jupiter , 1993 .

[10]  R. West,et al.  Quasi-random narrow-band model fits to near-infrared low-temperature laboratory methane spectra and derived exponential-sum absorption coefficients , 1993 .

[11]  A. Borysow,et al.  New model of collision-induced infrared absorption spectra of H2He pairs in the 2–2.5 μm range at temperatures from 20 to 300 K: An update , 1992 .

[12]  A. Borysow Modeling of collision-induced infrared absorption spectra of H2-H2 pairs in the fundamental band at temperatures from 20 to 300 K , 1991 .

[13]  I. Pater,et al.  Possible microwave absorption by H2S gas in Uranus' and Neptune's atmospheres , 1991 .

[14]  M. Tomasko,et al.  Properties of scatterers in the troposphere and lower stratosphere of Uranus based on Voyager imaging data , 1991 .

[15]  U. Fink,et al.  Gaussian quadrature exponential sum modeling of near infrared methane laboratory spectra obtained at temperatures from 106 to 297 K , 1990 .

[16]  A. Mckellar The spectrum of gaseous methane at 77 K in the 1.1 – 2.6 μm region: a benchmark for planetary astronomy , 1989 .

[17]  B. Carlson,et al.  Cloud Microphysics of the Giant Planets , 1988 .

[18]  J. Pollack,et al.  Latitudinal Variations in the Scattering Components of Uranus' Atmosphere , 1988 .

[19]  G. F. Lindal,et al.  The atmosphere of Uranus: Results of radio occultation measurements with Voyager 2 , 1987 .

[20]  Kevin H. Baines,et al.  The structure of the Uranian atmosphere - Constraints from the geometric albedo spectrum and H2 and CH4 line profiles , 1986 .

[21]  U. Fink,et al.  The infrared spectra of Uranus, Neptune, and Titan from 0.8 to 2.5 microns , 1979 .

[22]  K. Fox On the rotational partition function for tetrahedral molecules , 1970 .

[23]  A. Borysow,et al.  Modeling of Collision-Induced Infrared Absorption Spectra of H2 Pairs in the First Overtone Band at Temperatures from 20 to 500 K , 1995 .

[24]  R. West,et al.  Clouds and aerosols in the Uranian atmosphere , 1991 .

[25]  B. Armstrong Spectrum line profiles: The Voigt function , 1967 .