What Is Bohmian Mechanics

Bohmian mechanics is a quantum theory with a clear ontology. To make clear what we mean by this, we shall proceed by recalling first what are the problems of quantum mechanics. We shall then briefly sketch the basics of Bohmian mechanics and indicate how Bohmian mechanics solves these problems and clarifies the status and the role of the quantum formalism.

[1]  On the Classical Limit of Quantum Mechanics , 2001, quant-ph/0112009.

[2]  P. Grangier,et al.  Experimental Tests of Realistic Local Theories via Bell's Theorem , 1981 .

[3]  Roderich Tumulka,et al.  Opposite arrows of time can reconcile relativity and nonlocality , 2001, quant-ph/0105040.

[4]  Detlef Dürr,et al.  Bohmsche Mechanik als Grundlage der Quantenmechanik , 2001 .

[5]  Seven steps towards the classical world , 2001, quant-ph/0112005.

[6]  Jean Bricmont,et al.  Bayes, Boltzmann and Bohm: Probabilities in Physics , 2001 .

[7]  A. Gleason Measures on the Closed Subspaces of a Hilbert Space , 1957 .

[8]  D. Dürr,et al.  Quantum equilibrium and the origin of absolute uncertainty , 1992, quant-ph/0308039.

[9]  Weber,et al.  Unified dynamics for microscopic and macroscopic systems. , 1986, Physical review. D, Particles and fields.

[10]  P. Holland The Quantum Theory of Motion , 1993 .

[11]  J. Bell,et al.  Speakable and Unspeakable in Quatum Mechanics , 1988 .

[12]  J. Neumann Mathematische grundlagen der Quantenmechanik , 1935 .

[13]  E. Schrödinger Die gegenwärtige Situation in der Quantenmechanik , 1935, Naturwissenschaften.

[14]  S. Goldstein,et al.  Hypersurface Bohm-Dirac models , 1999 .

[15]  B. Hiley The Undivided Universe , 1993 .

[16]  Martin Daumer,et al.  Naive Realism about Operators , 1996 .

[17]  Sheldon Goldstein,et al.  Quantum Theory without Observers—Part One , 1998 .

[18]  E. Specker,et al.  The Problem of Hidden Variables in Quantum Mechanics , 1967 .

[19]  V. Allori Decoherence and the classical limit of quantum mechanics , 2002 .

[20]  Goldstein,et al.  Nonlocality, Lorentz invariance, and Bohmian quantum theory. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[21]  K. Berndl,et al.  On the global existence of Bohmian mechanics , 1995, quant-ph/9503013.

[22]  Sheldon Goldstein,et al.  Quantum Equilibrium and the Role of Operators as Observables in Quantum Theory , 2003, quant-ph/0308038.

[23]  S. Goldstein,et al.  On the Quantum Probability Flux Through Surfaces , 1995, quant-ph/9512016.

[24]  J. Wheeler,et al.  Quantum theory and measurement , 1983 .

[25]  Stefan Teufel,et al.  Scattering theory from microscopic first principles , 2000 .

[26]  C. R. Leavens The “Tunneling-Time Problem” for Electrons , 1996 .

[27]  S. Goldstein,et al.  Bohmian mechanics as the foundation of quantum mechanics , 1995, quant-ph/9511016.

[28]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .