Combating disinformation in a social media age

The creation, dissemination, and consumption of disinformation and fabricated content on social media is a growing concern, especially with the ease of access to such sources, and the lack of awareness of the existence of such false information. In this article, we present an overview of the techniques explored to date for the combating of disinformation with various forms. We introduce different forms of disinformation, discuss factors related to the spread of disinformation, elaborate on the inherent challenges in detecting disinformation, and show some approaches to mitigating disinformation via education, research, and collaboration. Looking ahead, we present some promising future research directions on disinformation.

[1]  Thomas C. Toppino,et al.  Frequency and the Conference of Referential Validity. , 1977 .

[2]  Edward J. Delp,et al.  Deepfake Video Detection Using Recurrent Neural Networks , 2018, 2018 15th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS).

[3]  Miriam J. Metzger,et al.  The science of fake news , 2018, Science.

[4]  Huan Liu,et al.  Detecting Fake News on Social Media , 2019, Synthesis Lectures on Data Mining and Knowledge Discovery.

[5]  Kyumin Lee,et al.  Seven Months with the Devils: A Long-Term Study of Content Polluters on Twitter , 2011, ICWSM.

[6]  Simon S. Woo,et al.  Detecting Both Machine and Human Created Fake Face Images In the Wild , 2018, MPS@CCS.

[7]  Filippo Menczer,et al.  The spread of fake news by social bots , 2017, ArXiv.

[8]  Vern Paxson,et al.  Adapting Social Spam Infrastructure for Political Censorship , 2012, LEET.

[9]  Hernán A. Makse,et al.  CUNY Academic Works , 2022 .

[10]  Jacob Goldenberg,et al.  Using Complex Systems Analysis to Advance Marketing Theory Development , 2001 .

[11]  R. H. Knapp,et al.  A PSYCHOLOGY OF RUMOR , 1944 .

[12]  Ali Abington Gossip and organizations , 2013 .

[13]  H. Russell Bernard,et al.  Studying Fake News via Network Analysis: Detection and Mitigation , 2018, Lecture Notes in Social Networks.

[14]  Xin Yang,et al.  Exposing Deep Fakes Using Inconsistent Head Poses , 2018, ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[15]  Siwei Lyu,et al.  In Ictu Oculi: Exposing AI Generated Fake Face Videos by Detecting Eye Blinking , 2018, ArXiv.

[16]  Eli Pariser,et al.  The Filter Bubble: How the New Personalized Web Is Changing What We Read and How We Think , 2012 .

[17]  Fred Morstatter,et al.  Misinformation in Social Media: Definition, Manipulation, and Detection , 2019, SKDD.

[18]  Marin Vukovic,et al.  An Intelligent Automatic Hoax Detection System , 2009, KES.

[19]  Jong Kim,et al.  Early filtering of ephemeral malicious accounts on Twitter , 2014, Comput. Commun..

[20]  Evangelos E. Papalexakis,et al.  Semi-supervised Content-Based Detection of Misinformation via Tensor Embeddings , 2018, 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM).

[21]  Sebastian Tschiatschek,et al.  Fake News Detection in Social Networks via Crowd Signals , 2017, WWW.

[22]  Viviana Patti,et al.  Stance Classification for Rumour Analysis in Twitter: Exploiting Affective Information and Conversation Structure , 2018, CIKM Workshops.

[23]  A. Roets,et al.  ‘Fake news’: Incorrect, but hard to correct. The role of cognitive ability on the impact of false information on social impressions , 2017 .

[24]  Naren Ramakrishnan,et al.  Epidemiological modeling of news and rumors on Twitter , 2013, SNAKDD '13.

[25]  Philip S. Yu,et al.  Truth Discovery with Multiple Conflicting Information Providers on the Web , 2007, IEEE Transactions on Knowledge and Data Engineering.

[26]  Sune Lehmann,et al.  Accelerating dynamics of collective attention , 2019, Nature Communications.

[27]  Filippo Menczer,et al.  The rise of social bots , 2014, Commun. ACM.

[28]  Yan Liu,et al.  Neural User Response Generator: Fake News Detection with Collective User Intelligence , 2018, IJCAI.

[29]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[30]  Ali Farhadi,et al.  Defending Against Neural Fake News , 2019, NeurIPS.

[31]  Huan Liu,et al.  Evaluating the trustworthiness of Wikipedia articles through quality and credibility , 2009, Int. Sym. Wikis.

[32]  Eugenio Tacchini,et al.  Some Like it Hoax: Automated Fake News Detection in Social Networks , 2017, ArXiv.

[33]  David W. McDonald,et al.  Dissecting a Social Botnet: Growth, Content and Influence in Twitter , 2015, CSCW.

[34]  Mark S. Granovetter Threshold Models of Collective Behavior , 1978, American Journal of Sociology.

[35]  Xu Zhang,et al.  Detecting and Simulating Artifacts in GAN Fake Images , 2019, 2019 IEEE International Workshop on Information Forensics and Security (WIFS).

[36]  Emilio Ferrara,et al.  Deep Neural Networks for Bot Detection , 2018, Inf. Sci..

[37]  Reza Zafarani,et al.  The Role of User Profiles for Fake News Detection , 2019, 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM).

[38]  Rosa Andrie Asmara,et al.  Study of hoax news detection using naïve bayes classifier in Indonesian language , 2017, 2017 11th International Conference on Information & Communication Technology and System (ICTS).

[39]  Gao Xian Peh,et al.  Neural Abstractive Text Summarization and Fake News Detection , 2019, ArXiv.

[40]  Arkaitz Zubiaga Learning Class-specific Word Representations for Early Detection of Hoaxes in Social Media , 2018, ArXiv.

[41]  Dietram A. Scheufele,et al.  Science audiences, misinformation, and fake news , 2019, Proceedings of the National Academy of Sciences.

[42]  Wenbing Huang,et al.  Rumor Detection on Social Media with Bi-Directional Graph Convolutional Networks , 2020, AAAI.

[43]  Fatima K. Abu Salem,et al.  FA-KES: A Fake News Dataset around the Syrian War , 2019, ICWSM.

[44]  Jacob Goldenberg,et al.  Talk of the Network: A Complex Systems Look at the Underlying Process of Word-of-Mouth , 2001 .

[45]  Alec Radford,et al.  Improving Language Understanding by Generative Pre-Training , 2018 .

[46]  Ilya Sutskever,et al.  Language Models are Unsupervised Multitask Learners , 2019 .

[47]  David G. Rand,et al.  Belief in Fake News Is Associated with Delusionality, Dogmatism, Religious Fundamentalism, and Reduced Analytic Thinking , 2018, Journal of Applied Research in Memory and Cognition.

[48]  Davide Cozzolino,et al.  Detection of GAN-Generated Fake Images over Social Networks , 2018, 2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR).

[49]  Yiannis Kompatsiaris,et al.  Detection and visualization of misleading content on Twitter , 2017, International Journal of Multimedia Information Retrieval.

[50]  Johan Bollen,et al.  Computational Fact Checking from Knowledge Networks , 2015, PloS one.

[51]  Suhang Wang,et al.  SAME: Sentiment-Aware Multi-Modal Embedding for Detecting Fake News , 2019, 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM).

[52]  S. Anthony,et al.  Anxiety and rumor. , 1973, The Journal of social psychology.

[53]  Huan Liu,et al.  Graph Neural Networks with High-order Feature Interactions , 2019, ArXiv.

[54]  Harco Leslie Hendric Spits Warnars,et al.  Early investigation of proposed hoax detection for decreasing hoax in social media , 2017, 2017 IEEE International Conference on Cybernetics and Computational Intelligence (CyberneticsCom).

[55]  Divyakant Agrawal,et al.  Limiting the spread of misinformation in social networks , 2011, WWW.

[56]  Zhoujun Li,et al.  TI-CNN: Convolutional Neural Networks for Fake News Detection , 2018, ArXiv.

[57]  Y. Shao,et al.  Discovery of indolylpiperazinylpyrimidines with dual-target profiles at adenosine A2A and dopamine D2 receptors for Parkinson's disease treatment , 2018, PloS one.

[58]  Karl E. Weick,et al.  Rumor and gossip: The social psychology of hearsay. , 1977 .

[59]  Sinan Aral,et al.  The spread of true and false news online , 2018, Science.

[60]  Bernhard Schölkopf,et al.  Leveraging the Crowd to Detect and Reduce the Spread of Fake News and Misinformation , 2017, WSDM.

[61]  Philip Resnik,et al.  Political Ideology Detection Using Recursive Neural Networks , 2014, ACL.

[62]  Jeffrey A. Gottfried,et al.  News use across social media platforms 2016 , 2016 .

[63]  Yang Liu,et al.  Early Detection of Fake News on Social Media Through Propagation Path Classification with Recurrent and Convolutional Networks , 2018, AAAI.

[64]  Dirk De Maeyer,et al.  Internet's information highway potential , 1997, Internet Res..

[65]  Kristoffer Holt,et al.  Paradoxical populism: how PEGIDA relates to mainstream and alternative media , 2019 .

[66]  Weili Wu,et al.  On Misinformation Containment in Online Social Networks , 2018, NeurIPS.

[67]  Kate Starbird,et al.  Examining the Alternative Media Ecosystem Through the Production of Alternative Narratives of Mass Shooting Events on Twitter , 2017, ICWSM.

[68]  D. Lazer,et al.  Fake news on Twitter during the 2016 U.S. presidential election , 2019, Science.

[69]  Massimo Di Pierro,et al.  Automatic Online Fake News Detection Combining Content and Social Signals , 2018, 2018 22nd Conference of Open Innovations Association (FRUCT).

[70]  B. S. Manjunath,et al.  Detecting GAN generated Fake Images using Co-occurrence Matrices , 2019, Media Watermarking, Security, and Forensics.

[71]  Kate Starbird,et al.  Alternative Narratives of Crisis Events: Communities and Social Botnets Engaged on Social Media , 2017, CSCW Companion.

[72]  Jacob Ratkiewicz,et al.  Detecting and Tracking the Spread of Astroturf Memes in Microblog Streams , 2010, ArXiv.

[73]  William Yang Wang “Liar, Liar Pants on Fire”: A New Benchmark Dataset for Fake News Detection , 2017, ACL.

[74]  R. L. Rosnow Inside rumor: A personal journey. , 1991 .

[75]  Shuo Yang,et al.  Unsupervised Fake News Detection on Social Media: A Generative Approach , 2019, AAAI.

[76]  Fenglong Ma,et al.  EANN: Event Adversarial Neural Networks for Multi-Modal Fake News Detection , 2018, KDD.

[77]  Yongdong Zhang,et al.  Detection and Analysis of 2016 US Presidential Election Related Rumors on Twitter , 2017, SBP-BRiMS.

[78]  Eric Gilbert,et al.  CREDBANK: A Large-Scale Social Media Corpus With Associated Credibility Annotations , 2015, ICWSM.

[79]  Tim Weninger,et al.  Discriminative predicate path mining for fact checking in knowledge graphs , 2015, Knowl. Based Syst..

[80]  Filippo Menczer,et al.  Anatomy of an online misinformation network , 2018, PloS one.

[81]  Jürgen Pfeffer,et al.  Characterizing the life cycle of online news stories using social media reactions , 2013, CSCW.

[82]  Michael Sirivianos,et al.  Aiding the Detection of Fake Accounts in Large Scale Social Online Services , 2012, NSDI.

[83]  Thomas Boghardt,et al.  Operation INFEKTION: Soviet Bloc Intelligence and Its AIDS Disinformation Campaign , 2009 .

[84]  Dong Wang,et al.  Constraint-aware dynamic truth discovery in big data social media sensing , 2017, 2017 IEEE International Conference on Big Data (Big Data).

[85]  E. Papalexakis Unsupervised Content-Based Identification of Fake News Articles with Tensor Decomposition Ensembles , 2018 .

[86]  Huan Liu,et al.  FakeNewsNet: A Data Repository with News Content, Social Context, and Spatiotemporal Information for Studying Fake News on Social Media , 2018, Big Data.

[87]  Tim Weninger,et al.  Fact Checking in Heterogeneous Information Networks , 2016, WWW.

[88]  David G. Rand,et al.  Lazy, not biased: Susceptibility to partisan fake news is better explained by lack of reasoning than by motivated reasoning , 2019, Cognition.

[89]  J. Tempel,et al.  Relationships between conspiracy mentality, hyperactive agency detection, and schizotypy: Supernatural forces at work? , 2015 .

[90]  Huan Liu,et al.  Deep Anomaly Detection on Attributed Networks , 2019, SDM.

[91]  Reza Zafarani,et al.  Social Media Mining: Information Diffusion in Social Media , 2014 .

[92]  Geoff Hulten,et al.  Spamming botnets: signatures and characteristics , 2008, SIGCOMM '08.

[93]  François Chollet,et al.  Xception: Deep Learning with Depthwise Separable Convolutions , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[94]  Max Welling,et al.  Semi-Supervised Classification with Graph Convolutional Networks , 2016, ICLR.

[95]  拓海 杉山,et al.  “Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks”の学習報告 , 2017 .

[96]  Edson C. Tandoc The facts of fake news: A research review , 2019, Sociology Compass.

[97]  Ullrich K. H. Ecker,et al.  The Role of Familiarity in Correcting Inaccurate Information , 2017, Journal of experimental psychology. Learning, memory, and cognition.

[98]  Huan Liu,et al.  FakeNewsNet: A Data Repository with News Content, Social Context and Dynamic Information for Studying Fake News on Social Media , 2018, ArXiv.

[99]  Mohammad Ali Abbasi,et al.  Measuring User Credibility in Social Media , 2013, SBP.

[100]  Sushil Jajodia,et al.  Detecting Automation of Twitter Accounts: Are You a Human, Bot, or Cyborg? , 2012, IEEE Transactions on Dependable and Secure Computing.

[101]  C. Sunstein,et al.  Conspiracy Theories: Causes and Cures* , 2009 .

[102]  L. Bettencourt,et al.  The power of a good idea: Quantitative modeling of the spread of ideas from epidemiological models , 2005, physics/0502067.

[104]  Sree Priyanka Uppu,et al.  E-Cigarette Surveillance With Social Media Data: Social Bots, Emerging Topics, and Trends , 2017, JMIR public health and surveillance.

[105]  Nam P. Nguyen,et al.  Containment of misinformation spread in online social networks , 2012, WebSci '12.

[106]  David A. Broniatowski,et al.  Weaponized Health Communication: Twitter Bots and Russian Trolls Amplify the Vaccine Debate , 2018, American journal of public health.

[107]  WanSoo Lee Why do people fall for fake news , 2019 .

[108]  Huan Liu,et al.  Provenance Data in Social Media , 2013, Synthesis Lectures on Data Mining and Knowledge Discovery.

[109]  Emilio Ferrara,et al.  Social Bots Distort the 2016 US Presidential Election Online Discussion , 2016, First Monday.

[110]  Nitin Agarwal,et al.  Analyzing Social Bots and Their Coordination During Natural Disasters , 2018, SBP-BRiMS.

[111]  Kyumin Lee,et al.  The Rise of Guardians: Fact-checking URL Recommendation to Combat Fake News , 2018, SIGIR.

[112]  P. Bordia,et al.  Rumor Psychology: Social and Organizational Approaches , 2006 .

[113]  Kenny Q. Zhu,et al.  False rumors detection on Sina Weibo by propagation structures , 2015, 2015 IEEE 31st International Conference on Data Engineering.

[114]  He Jiang,et al.  Combating Fake News , 2019, ACM Trans. Intell. Syst. Technol..

[115]  Yongdong Zhang,et al.  News Verification by Exploiting Conflicting Social Viewpoints in Microblogs , 2016, AAAI.

[116]  Ehsan Mohammadi,et al.  “Life never matters in the DEMOCRATS MIND”: Examining strategies of retweeted social bots during a mass shooting event , 2018, ASIST.

[117]  Samuel B. Williams,et al.  ASSOCIATION FOR COMPUTING MACHINERY , 2000 .

[118]  Jacob Ratkiewicz,et al.  Truthy: mapping the spread of astroturf in microblog streams , 2010, WWW.

[119]  Laks V. S. Lakshmanan,et al.  Combating Fake News: A Data Management and Mining Perspective , 2019, Proc. VLDB Endow..

[120]  Filippo Menczer,et al.  Online Human-Bot Interactions: Detection, Estimation, and Characterization , 2017, ICWSM.

[121]  P. Hernon Disinformation and misinformation through the internet: Findings of an exploratory study , 1995 .

[122]  J.C. Hernandez,et al.  A first step towards automatic hoax detection , 2002, Proceedings. 36th Annual 2002 International Carnahan Conference on Security Technology.

[123]  Jessica R. Collier,et al.  Priming and Fake News: The Effects of Elite Discourse on Evaluations of News Media , 2018, Mass Communication and Society.

[124]  Huan Liu,et al.  A new approach to bot detection: Striking the balance between precision and recall , 2016, 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM).

[125]  B. Nyhan,et al.  Selective exposure to misinformation: Evidence from the consumption of fake news during the 2016 U.S. presidential campaign , 2018 .

[126]  My T. Thai,et al.  Minimum budget for misinformation blocking in online social networks , 2019, J. Comb. Optim..

[127]  Yonghui Wu,et al.  Exploring the Limits of Language Modeling , 2016, ArXiv.

[128]  M. Gentzkow,et al.  Social Media and Fake News in the 2016 Election , 2017 .

[129]  Giovanni Luca Ciampaglia,et al.  The spread of low-credibility content by social bots , 2017, Nature Communications.

[130]  Arkaitz Zubiaga,et al.  Analysing How People Orient to and Spread Rumours in Social Media by Looking at Conversational Threads , 2015, PloS one.

[131]  Vincent Dumoulin,et al.  Deconvolution and Checkerboard Artifacts , 2016 .

[132]  Nicolò Cesa-Bianchi,et al.  Advances in Neural Information Processing Systems 31 , 2018, NIPS 2018.

[133]  James H. Fetzer Disinformation: The Use of False Information , 2004, Minds and Machines.

[134]  Toby Clark Historical Dictionary of American Propaganda , 2005 .

[135]  Vern Paxson,et al.  Detecting and Analyzing Automated Activity on Twitter , 2011, PAM.

[136]  Davide Eynard,et al.  Fake News Detection on Social Media using Geometric Deep Learning , 2019, ArXiv.

[137]  Jacob Ratkiewicz,et al.  Detecting and Tracking Political Abuse in Social Media , 2011, ICWSM.

[138]  Suhang Wang,et al.  Fake News Detection on Social Media: A Data Mining Perspective , 2017, SKDD.