An MCMC Approach to Multivariate Density Forecasting: An Application to Liquidity

We analyze the construction of multivariate forecasting densities based on conditional models for each variable, given the other variables; a joint predictive density is obtained by iteratively simulating from the conditional models. This idea has been pursued in the context of missing data imputation, but is new to the field of econometric forecasting. Its main advantage is that only univariate models for the variables in question are needed as inputs. Within a Monte Carlo study we illustrate the flexibility and robustness of this approach especially for the case of model misspecification. We then consider forecasting the bivariate mixed discrete-continuous distribution of returns and order flows on a high frequency level. This distribution can be related to an ex-post concept of market liquidity. A simulation-based forecasting distribution constructed from the conditional models for returns and order flows is found to outperform a vector autoregressive benchmark for several large-cap US stocks.

[1]  J. Rice Bandwidth Choice for Nonparametric Regression , 1984 .

[2]  Charles M. Jones,et al.  Does Algorithmic Trading Improve Liquidity? , 2010 .

[3]  N. L. Johnson,et al.  Discrete Multivariate Distributions , 1998 .

[4]  Sugato Chakravarty,et al.  Stealth-trading : Which traders ’ trades move stock prices ? , 2001 .

[5]  A. Raftery,et al.  Strictly Proper Scoring Rules, Prediction, and Estimation , 2007 .

[6]  W. Härdle Nonparametric and Semiparametric Models , 2004 .

[7]  David M. Zimmer,et al.  Modelling the Differences in Counted Outcomes Using Bivariate Copula Models with Application to Mismeasured Counts , 2004 .

[8]  W. Pohlmeier,et al.  An inflated multivariate integer count hurdle model : an application to bid and ask quote dynamics , 2011 .

[9]  T. Raghunathan,et al.  Multiple Imputation of Missing Income Data in the National Health Interview Survey , 2006 .

[10]  D. Rubin,et al.  Fully conditional specification in multivariate imputation , 2006 .

[11]  Ingmar Nolte Modeling a Multivariate Transaction Process , 2007 .

[12]  S. van Buuren Multiple imputation of discrete and continuous data by fully conditional specification , 2007, Statistical methods in medical research.

[13]  Charles M. C. Lee,et al.  Inferring Trade Direction from Intraday Data , 1991 .

[14]  J. Geweke,et al.  Optimal Prediction Pools , 2008 .

[15]  Francis X. Diebold,et al.  The Rodney L. White Center for Financial Research Financial Asset Returns, Direction-of-Change Forecasting and Volatility , 2003 .

[16]  S. Kocherlakota,et al.  Bivariate discrete distributions , 1992 .

[17]  G. Roberts,et al.  Updating Schemes, Correlation Structure, Blocking and Parameterization for the Gibbs Sampler , 1997 .

[18]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[19]  Richard Roll,et al.  Orderimbalance, Liquidity and Market Returns , 2001 .

[20]  Winfried Pohlmeier,et al.  Modelling financial transaction price movements: a dynamic integer count data model , 2006 .

[21]  Helmut Ltkepohl,et al.  New Introduction to Multiple Time Series Analysis , 2007 .

[22]  Martin D. D. Evans,et al.  Order Flow and Exchange Rate Dynamics , 1999, Journal of Political Economy.

[23]  Thomas H. McCurdy,et al.  Do High-Frequency Measures of Volatility Improve Forecasts of Return Distributions? , 2008 .

[24]  Kerry Back,et al.  Working Orders in Limit-Order Markets and Floor Exchanges , 2005 .

[25]  David Maxwell Chickering,et al.  Dependency Networks for Inference, Collaborative Filtering, and Data Visualization , 2000, J. Mach. Learn. Res..

[26]  W. Newey,et al.  A Simple, Positive Semi-Definite, Heteroskedasticity and Autocorrelationconsistent Covariance Matrix , 1986 .

[27]  J. Besag Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .

[28]  Robert J. Bloomfield,et al.  The 'Make or Take' Decision in an Electronic Market: Evidence on the Evolution of Liquidity , 2002 .

[29]  M. Hashem Pesaran,et al.  A Simple Nonparametric Test of Predictive Performance , 1992 .

[30]  Christine M. Anderson-Cook,et al.  Book review: quantitative risk management: concepts, techniques and tools, revised edition, by A.F. McNeil, R. Frey and P. Embrechts. Princeton University Press, 2015, ISBN 978-0-691-16627-8, xix + 700 pp. , 2017, Extremes.

[31]  B. Silverman Density estimation for statistics and data analysis , 1986 .

[32]  Fulvio Corsi,et al.  A Simple Approximate Long-Memory Model of Realized Volatility , 2008 .

[33]  Paul Embrechts,et al.  Quantitative Risk Management , 2011, International Encyclopedia of Statistical Science.

[34]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.

[35]  Bnp Paribas,et al.  Dynamics of trade-by-trade price movements : decomposition and models , 1998 .

[36]  Stanislav Anatolyev Nonparametric Retrospection and Monitoring of Predictability of Financial Returns , 2007 .

[37]  B. Arnold,et al.  Conditionally specified distributions: an introduction , 2001 .

[38]  A. Ullah,et al.  Nonparametric Econometrics , 1999 .

[39]  Andréas Heinen,et al.  Multivariate autoregressive modeling of time series count data using copulas , 2007 .

[40]  W. Newey,et al.  A Simple, Positive Semi-Definite, Heteroskedasticity and Autocorrelationconsistent Covariance Matrix , 1986 .

[41]  Ingram Olkin,et al.  Multivariate distributions generated from mixtures of convolution and product families , 1990 .

[42]  John Geweke,et al.  Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments , 1991 .

[43]  Bernard W. Silverman,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[44]  W. Gilks Markov Chain Monte Carlo , 2005 .

[45]  Pierre Giot,et al.  Econometric Modelling of Stock Market Intraday Activity , 2001 .

[46]  F. Diebold,et al.  Comparing Predictive Accuracy , 1994, Business Cycles.

[47]  Andrew J. Patton Copula-Based Models for Financial Time Series , 2009 .

[48]  N. Shephard,et al.  Realized Kernels in Practice: Trades and Quotes , 2009 .

[49]  A. Cameron,et al.  Microeconometrics: Methods and Applications , 2005 .

[50]  Bradley P. Carlin,et al.  Markov Chain Monte Carlo conver-gence diagnostics: a comparative review , 1996 .