On Histograms and Isosurface Statistics

In this paper, we show that histograms represent spatial function distributions with a nearest neighbour interpolation. We confirm that this results in systematic underrepresentation of transitional features of the data, and provide new insight why this occurs. We further show that isosurface statistics, which use higher quality interpolation, give better representations of the function distribution. We also use our experimentally collected isosurface statistics to resolve some questions as to the formal complexity of isosurfaces

[1]  William E. Lorensen,et al.  Marching cubes: a high resolution 3D surface construction algorithm , 1996 .

[2]  Roberto Scopigno,et al.  A modified look-up table for implicit disambiguation of Marching Cubes , 1994, The Visual Computer.

[3]  Bernd Hamann,et al.  The asymptotic decider: resolving the ambiguity in marching cubes , 1991, Proceeding Visualization '91.

[4]  Gregory M. Nielson,et al.  On Marching Cubes , 2003, IEEE Trans. Vis. Comput. Graph..

[5]  Rafael C. González,et al.  Local Determination of a Moving Contrast Edge , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Rafael Wiemker,et al.  Fast detection of meaningful isosurfaces for volume data visualization , 2001, Proceedings Visualization, 2001. VIS '01..

[7]  Yannis E. Ioannidis,et al.  The History of Histograms (abridged) , 2003, VLDB.

[8]  Ken Brodlie,et al.  Improving the Robustness and Accuracy of the Marching Cubes Algorithm for Isosurfacing , 2003, IEEE Trans. Vis. Comput. Graph..

[9]  Thomas Theußl,et al.  Isosurfaces on Optimal Regular Samples , 2003, VisSym.

[10]  Valerio Pascucci,et al.  The contour spectrum , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[11]  Joe Michael Kniss,et al.  Interactive volume rendering using multi-dimensional transfer functions and direct manipulation widgets , 2001, Proceedings Visualization, 2001. VIS '01..

[12]  Georges Voronoi Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Premier mémoire. Sur quelques propriétés des formes quadratiques positives parfaites. , 1908 .

[13]  K. W. Cattermole The Fourier Transform and its Applications , 1965 .

[14]  Raghu Machiraju,et al.  Salient iso-surface detection with model-independent statistical signatures , 2001, Proceedings Visualization, 2001. VIS '01..

[15]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[16]  Koji Koyamada,et al.  Isosurface generation by using extrema graphs , 1994, Proceedings Visualization '94.

[17]  Steve Marschner,et al.  An evaluation of reconstruction filters for volume rendering , 1994, Proceedings Visualization '94.

[18]  Herbert Edelsbrunner,et al.  Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms , 1988, SCG '88.