Mixed discontinuous Galerkin approximation of the Maxwell operator: The indefinite case
暂无分享,去创建一个
Ilaria Perugia | Paul Houston | Dominik Schötzau | D. Schötzau | P. Houston | I. Perugia | A. Schneebeli
[1] Chi-Wang Shu,et al. Runge–Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems , 2001, J. Sci. Comput..
[2] Christophe Hazard,et al. A Singular Field Method for the Solution of Maxwell's Equations in Polyhedral Domains , 1999, SIAM J. Appl. Math..
[3] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[4] Zhiming Chen,et al. Finite Element Methods with Matching and Nonmatching Meshes for Maxwell Equations with Discontinuous Coefficients , 2000, SIAM J. Numer. Anal..
[5] J. Nédélec. A new family of mixed finite elements in ℝ3 , 1986 .
[6] A. H. Schatz,et al. An observation concerning Ritz-Galerkin methods with indefinite bilinear forms , 1974 .
[7] Ilaria Perugia,et al. Mixed Discontinuous Galerkin Approximation of the Maxwell Operator: Non-Stabilized Formulation , 2005, J. Sci. Comput..
[8] Ohannes A. Karakashian,et al. A Posteriori Error Estimates for a Discontinuous Galerkin Approximation of Second-Order Elliptic Problems , 2003, SIAM J. Numer. Anal..
[9] Martin Costabel,et al. Weighted regularization of Maxwell equations in polyhedral domains , 2002, Numerische Mathematik.
[10] Paul Houston,et al. Discontinuous hp-Finite Element Methods for Advection-Diffusion-Reaction Problems , 2001, SIAM J. Numer. Anal..
[11] R. Hiptmair. Finite elements in computational electromagnetism , 2002, Acta Numerica.
[12] Peter Monk,et al. A finite element method for approximating the time-harmonic Maxwell equations , 1992 .
[13] Gianni Gilardi,et al. Magnetostatic and Electrostatic Problems in Inhomogeneous Anisotropic Media with Irregular Boundary and Mixed Boundary Conditions , 1997 .
[14] M. Y. Hussaini,et al. Discontinuous Spectral Element Approximation of Maxwell’s Equations , 2000 .
[15] George Em Karniadakis,et al. The Development of Discontinuous Galerkin Methods , 2000 .
[16] Douglas N. Arnold,et al. Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..
[17] Gerd Grubb,et al. PROBLÉMES AUX LIMITES NON HOMOGÉNES ET APPLICATIONS , 1969 .
[18] Alberto Valli,et al. An optimal domain decomposition preconditioner for low-frequency time-harmonic Maxwell equations , 1999, Math. Comput..
[19] Daniele Boffi,et al. EDGE FINITE ELEMENTS FOR THE APPROXIMATION OF MAXWELL RESOLVENT OPERATOR , 2002 .
[20] Michel Fortin,et al. A minimal stabilisation procedure for mixed finite element methods , 2000, Numerische Mathematik.
[21] Ilaria Perugia,et al. The hp-local discontinuous Galerkin method for low-frequency time-harmonic Maxwell equations , 2003, Math. Comput..
[22] Michel Fortin,et al. Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.
[23] V. Girault,et al. Vector potentials in three-dimensional non-smooth domains , 1998 .
[24] D. Schötzau,et al. Stabilized interior penalty methods for the time-harmonic Maxwell equations , 2002 .
[25] Ilaria Perugia,et al. Interior penalty method for the indefinite time-harmonic Maxwell equations , 2005, Numerische Mathematik.
[26] J. S. T. W. H. and,et al. High-order/spectral methods on unstructured grids I. Time-domain solution of Maxwell's equations , 2001 .
[27] Bernardo Cockburn,et al. Discontinuous Galerkin Methods for Convection-Dominated Problems , 1999 .
[28] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[29] L. Demkowicz,et al. Modeling of electromagnetic absorption/scattering problems using hp-adaptive finite elements , 1998 .
[30] L. Demkowicz,et al. hp-adaptive finite elements in electromagnetics , 1999 .
[31] Alberto Valli,et al. A domain decomposition approach for heterogeneous time-harmonic Maxwell equations , 1997 .
[32] Mark Ainsworth,et al. Hierarchic hp-edge element families for Maxwell's equations on hybrid quadrilateral/triangular meshes , 2001 .
[33] D. Schötzau,et al. hp -DGFEM for Maxwell’s equations , 2003 .
[34] Ronald H. W. Hoppe,et al. Finite element methods for Maxwell's equations , 2005, Math. Comput..
[35] P. Monk. A Simple Proof of Convergence for an Edge Element Discretization of Maxwell’s Equations , 2003 .