Mixed discontinuous Galerkin approximation of the Maxwell operator: The indefinite case

We introduce and analyze a discontinuous Galerkin discretization of the Maxwell operator in mixed form. Here, all the unknowns of the underlying system of partial differential equations are approximated by discontinuous finite element spaces of the same order. For piecewise constant coefficients, the method is shown to be stable and optimally convergent with respect to the mesh size. Numerical experiments highlighting the performance of the proposed method for problems with both smooth and singular analytical solutions are presented.

[1]  Chi-Wang Shu,et al.  Runge–Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems , 2001, J. Sci. Comput..

[2]  Christophe Hazard,et al.  A Singular Field Method for the Solution of Maxwell's Equations in Polyhedral Domains , 1999, SIAM J. Appl. Math..

[3]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[4]  Zhiming Chen,et al.  Finite Element Methods with Matching and Nonmatching Meshes for Maxwell Equations with Discontinuous Coefficients , 2000, SIAM J. Numer. Anal..

[5]  J. Nédélec A new family of mixed finite elements in ℝ3 , 1986 .

[6]  A. H. Schatz,et al.  An observation concerning Ritz-Galerkin methods with indefinite bilinear forms , 1974 .

[7]  Ilaria Perugia,et al.  Mixed Discontinuous Galerkin Approximation of the Maxwell Operator: Non-Stabilized Formulation , 2005, J. Sci. Comput..

[8]  Ohannes A. Karakashian,et al.  A Posteriori Error Estimates for a Discontinuous Galerkin Approximation of Second-Order Elliptic Problems , 2003, SIAM J. Numer. Anal..

[9]  Martin Costabel,et al.  Weighted regularization of Maxwell equations in polyhedral domains , 2002, Numerische Mathematik.

[10]  Paul Houston,et al.  Discontinuous hp-Finite Element Methods for Advection-Diffusion-Reaction Problems , 2001, SIAM J. Numer. Anal..

[11]  R. Hiptmair Finite elements in computational electromagnetism , 2002, Acta Numerica.

[12]  Peter Monk,et al.  A finite element method for approximating the time-harmonic Maxwell equations , 1992 .

[13]  Gianni Gilardi,et al.  Magnetostatic and Electrostatic Problems in Inhomogeneous Anisotropic Media with Irregular Boundary and Mixed Boundary Conditions , 1997 .

[14]  M. Y. Hussaini,et al.  Discontinuous Spectral Element Approximation of Maxwell’s Equations , 2000 .

[15]  George Em Karniadakis,et al.  The Development of Discontinuous Galerkin Methods , 2000 .

[16]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[17]  Gerd Grubb,et al.  PROBLÉMES AUX LIMITES NON HOMOGÉNES ET APPLICATIONS , 1969 .

[18]  Alberto Valli,et al.  An optimal domain decomposition preconditioner for low-frequency time-harmonic Maxwell equations , 1999, Math. Comput..

[19]  Daniele Boffi,et al.  EDGE FINITE ELEMENTS FOR THE APPROXIMATION OF MAXWELL RESOLVENT OPERATOR , 2002 .

[20]  Michel Fortin,et al.  A minimal stabilisation procedure for mixed finite element methods , 2000, Numerische Mathematik.

[21]  Ilaria Perugia,et al.  The hp-local discontinuous Galerkin method for low-frequency time-harmonic Maxwell equations , 2003, Math. Comput..

[22]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[23]  V. Girault,et al.  Vector potentials in three-dimensional non-smooth domains , 1998 .

[24]  D. Schötzau,et al.  Stabilized interior penalty methods for the time-harmonic Maxwell equations , 2002 .

[25]  Ilaria Perugia,et al.  Interior penalty method for the indefinite time-harmonic Maxwell equations , 2005, Numerische Mathematik.

[26]  J. S. T. W. H. and,et al.  High-order/spectral methods on unstructured grids I. Time-domain solution of Maxwell's equations , 2001 .

[27]  Bernardo Cockburn,et al.  Discontinuous Galerkin Methods for Convection-Dominated Problems , 1999 .

[28]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[29]  L. Demkowicz,et al.  Modeling of electromagnetic absorption/scattering problems using hp-adaptive finite elements , 1998 .

[30]  L. Demkowicz,et al.  hp-adaptive finite elements in electromagnetics , 1999 .

[31]  Alberto Valli,et al.  A domain decomposition approach for heterogeneous time-harmonic Maxwell equations , 1997 .

[32]  Mark Ainsworth,et al.  Hierarchic hp-edge element families for Maxwell's equations on hybrid quadrilateral/triangular meshes , 2001 .

[33]  D. Schötzau,et al.  hp -DGFEM for Maxwell’s equations , 2003 .

[34]  Ronald H. W. Hoppe,et al.  Finite element methods for Maxwell's equations , 2005, Math. Comput..

[35]  P. Monk A Simple Proof of Convergence for an Edge Element Discretization of Maxwell’s Equations , 2003 .