DESIGN OF A NONLINEAR SITR FRACTAL MODEL BASED ON THE DYNAMICS OF A NOVEL CORONAVIRUS (COVID-19)

The aim of the present paper is to state a simplified nonlinear mathematical model to describe the dynamics of the novel coronavirus (COVID-19). The design of the mathematical model is described in...

[1]  John M. Neuberger,et al.  A minmax principle, index of the critical point, and existence of sign-changing solutions to elliptic boundary value problems , 1998 .

[2]  Roberto Garrappa,et al.  On linear stability of predictor–corrector algorithms for fractional differential equations , 2010, Int. J. Comput. Math..

[3]  Herbert W. Hethcote,et al.  The Mathematics of Infectious Diseases , 2000, SIAM Rev..

[4]  Abdon Atangana,et al.  Modeling the dynamics of novel coronavirus (2019-nCov) with fractional derivative , 2020, Alexandria Engineering Journal.

[5]  Emile Franc Doungmo Goufo,et al.  A Fractional SEIR Epidemic Model for Spatial and Temporal Spread of Measles in Metapopulations , 2014 .

[6]  N. Ford,et al.  A Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations , 2013 .

[7]  Raja Muhammad Asif Zahoor,et al.  Intelligent computing for numerical treatment of nonlinear prey-predator models , 2019, Appl. Soft Comput..

[8]  Petter Ögren,et al.  Vaccination strategies for epidemics in highly mobile populations , 2002, Appl. Math. Comput..

[9]  K. Wickwire Mathematical models for the control of pests and infectious diseases: a survey. , 1977, Theoretical population biology.

[10]  R. Mickens A discrete-time model for the spread of periodic diseases without immunity. , 1992, Bio Systems.

[11]  Hans J. Stetter,et al.  Generalized Multistep Predictor-Corrector Methods , 1964, JACM.

[12]  Fevzi Erdogan,et al.  Stochastic numerical approach for solving second order nonlinear singular functional differential equation , 2019, Appl. Math. Comput..

[13]  Johannes Müller,et al.  Optimal Vaccination Patterns in Age-Structured Populations , 1998, SIAM J. Appl. Math..

[14]  P. Novati,et al.  The solution of fractional order epidemic model by implicit Adams methods , 2017 .

[15]  Ilknur Koca,et al.  Novel analysis of the fractional Zika model using the Adams type predictor-corrector rule for non-singular and non-local fractional operators , 2017 .

[16]  Georgios Psihoyios,et al.  Trigonometrically fitted predictor: corrector methods for IVPs with oscillating solutions , 2003 .

[17]  Sheila A. Bishop,et al.  A Variable-stpe-size Block Predictor-corrector Method for Ordinary Differential Equations , 2017 .

[18]  Raja Muhammad Asif Zahoor,et al.  Novel design of Morlet wavelet neural network for solving second order Lane-Emden equation , 2020, Math. Comput. Simul..

[19]  Varsha Daftardar-Gejji,et al.  A new finite-difference predictor-corrector method for fractional differential equations , 2018, Appl. Math. Comput..

[20]  K. Dietz THE FIRST EPIDEMIC MODEL: A HISTORICAL NOTE ON P.D. EN'KO , 1988 .

[21]  S. Lenhart,et al.  OPTIMIZING CHEMOTHERAPY IN AN HIV MODEL , 1998 .

[22]  Jianjun Jiao,et al.  Pest management through continuous and impulsive control strategies , 2007, Biosyst..

[23]  Z. Omar,et al.  Numerical Investigation of Multiple Solutions for Caputo Fractional-Order-Two Dimensional Magnetohydrodynamic Unsteady Flow of Generalized Viscous Fluid over a Shrinking Sheet Using the Adams-Type Predictor-Corrector Method , 2019, Coatings.

[24]  Fazli Amin,et al.  Unsupervised constrained neural network modeling of boundary value corneal model for eye surgery , 2019, Appl. Soft Comput..

[25]  Hem Raj Joshi,et al.  Optimal control of an HIV immunology model , 2002 .

[26]  Tofigh Allahviranloo,et al.  Numerical solution of fuzzy differential equations by predictor-corrector method , 2007, Inf. Sci..