Design, Fabrication, and Application of GaN-Based Micro-LED Arrays With Individual Addressing by N-Electrodes

We demonstrate the development, performance, and application of a GaN-based micro-light emitting diode ( <inline-formula><tex-math notation="LaTeX">$\mu$</tex-math></inline-formula>LED) array sharing a common p-electrode (anode), and with individually addressable n-electrodes (cathodes). Compared to conventional GaN-based LED arrays, this array design employs a reversed structure of common and individual electrodes, which makes it innovative and compatible with n-type metal-oxide-semiconductor (NMOS) transistor-based drivers for faster modulation. Excellent performance characteristics are illustrated by an example array emitting at 450 nm. At a current density of 17.7 kA/cm<inline-formula><tex-math notation="LaTeX">$^2$</tex-math></inline-formula> in direct-current operation, the optical power and small signal electrical-to-optical modulation bandwidth of a single <inline-formula> <tex-math notation="LaTeX">$\mu$</tex-math></inline-formula>LED element with 24 <inline-formula> <tex-math notation="LaTeX">$\mu$</tex-math></inline-formula>m diameter are over 2.0 mW and 440 MHz, respectively. The optimized fabrication process also ensures a high yield of working <inline-formula> <tex-math notation="LaTeX">$\mu$</tex-math></inline-formula>LED elements per array and excellent element-to-element uniformity of electrical/optical characteristics. Results on visible light communication are presented as an application of an array integrated with an NMOS driver. Data transmission at several hundred Mb/s without bit error is achieved for single- and multiple-<inline-formula><tex-math notation="LaTeX">$\mu$</tex-math></inline-formula> LED-element operations, under an <sc>on</sc>–<sc>off</sc>-keying modulation scheme. Transmission of stepped sawtooth waveforms is also demonstrated to confirm that the <inline-formula><tex-math notation="LaTeX">$\mu$</tex-math> </inline-formula>LED elements can transmit discrete multilevel signals.

[1]  D. Massoubre,et al.  Individually Addressable AlInGaN Micro-LED Arrays With CMOS Control and Subnanosecond Output Pulses , 2009, IEEE Photonics Technology Letters.

[2]  Dominic C. O'Brien,et al.  High-Speed Integrated Visible Light Communication System: Device Constraints and Design Considerations , 2015, IEEE Journal on Selected Areas in Communications.

[3]  I. Underwood,et al.  Active-Matrix GaN Micro Light-Emitting Diode Display With Unprecedented Brightness , 2015, IEEE Transactions on Electron Devices.

[4]  Erdan Gu,et al.  Optoelectronic tweezers system for single cell manipulation and fluorescence imaging of live immune cells. , 2014, Optics express.

[5]  Robert F. Davis,et al.  Cleaning of AlN and GaN surfaces , 1998 .

[6]  S. Sze,et al.  Physics of Semiconductor Devices: Sze/Physics , 2006 .

[7]  W. Balwanz Plasma Cleaning of Surfaces , 1979 .

[8]  Junyi Li,et al.  Visible light communication: opportunities, challenges and the path to market , 2013, IEEE Communications Magazine.

[9]  Robert K. Henderson,et al.  Sub-Micron Lithography Using InGaN Micro-LEDs: Mask-Free Fabrication of LED Arrays , 2012, IEEE Photonics Technology Letters.

[10]  M. S. Islim,et al.  Towards 10 Gb/s orthogonal frequency division multiplexing-based visible light communication using a GaN violet micro-LED , 2017 .

[11]  K. Langer,et al.  513 Mbit/s Visible Light Communications Link Based on DMT-Modulation of a White LED , 2010, Journal of Lightwave Technology.

[12]  Jing Li,et al.  III-nitride blue microdisplays , 2001 .

[13]  H. Grubin The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.

[14]  E. Fred Schubert,et al.  Light-Emitting Diodes , 2003 .

[15]  Erdan Gu,et al.  Size-dependent light output, spectral shift, and self-heating of 400 nm InGaN light-emitting diodes , 2010 .

[16]  V. Poher,et al.  Matrix-Addressable Micropixellated InGaN Light-Emitting Diodes With Uniform Emission and Increased Light Output , 2007, IEEE Transactions on Electron Devices.

[17]  Hongxing Jiang,et al.  III-Nitride full-scale high-resolution microdisplays , 2011 .

[18]  M. Dawson,et al.  Visible-Light Communications Using a CMOS-Controlled Micro-Light- Emitting-Diode Array , 2012, Journal of Lightwave Technology.

[19]  H. Haas,et al.  A 3-Gb/s Single-LED OFDM-Based Wireless VLC Link Using a Gallium Nitride $\mu{\rm LED}$ , 2014, IEEE Photonics Technology Letters.

[20]  I. White,et al.  High Bandwidth GaN-Based Micro-LEDs for Multi-Gb/s Visible Light Communications , 2016, IEEE Photonics Technology Letters.

[21]  Hongxing Jiang,et al.  GaN microdisk light emitting diodes , 2000 .

[22]  Stefan Videv,et al.  VLC: Beyond point-to-point communication , 2014, IEEE Communications Magazine.

[23]  H. Yano,et al.  Additive Nitrogen Effects on Oxygen Plasma Downstream Ashing , 1990 .

[24]  Kei May Lau,et al.  A Novel BLU-Free Full-Color LED Projector Using LED on Silicon Micro-Displays , 2013, IEEE Photonics Technology Letters.

[25]  S. Gershman,et al.  Plasma Cleaning of Surfaces , 2008 .