Design, Fabrication, and Application of GaN-Based Micro-LED Arrays With Individual Addressing by N-Electrodes
暂无分享,去创建一个
Oscar Almer | Erdan Gu | Sujan Rajbhandari | Grahame Faulkner | Martin D. Dawson | Aravind V. N. Jalajakumari | Johannes Herrnsdorf | Hyunchae Chun | Robert Henderson | Dominic O’Brien | Jonathan J. D. McKendry | Enyuan Xie | Ricardo Ferreira | Mark Stonehouse | Xiangyu He | R. Henderson | M. Dawson | D. O’brien | S. Rajbhandari | H. Chun | J. McKendry | E. Gu | G. Faulkner | E. Xie | R. Ferreira | Xiangyu He | J. Herrnsdorf | I. Watson | O. Almer | Ian M. Watson | M. Stonehouse
[1] D. Massoubre,et al. Individually Addressable AlInGaN Micro-LED Arrays With CMOS Control and Subnanosecond Output Pulses , 2009, IEEE Photonics Technology Letters.
[2] Dominic C. O'Brien,et al. High-Speed Integrated Visible Light Communication System: Device Constraints and Design Considerations , 2015, IEEE Journal on Selected Areas in Communications.
[3] I. Underwood,et al. Active-Matrix GaN Micro Light-Emitting Diode Display With Unprecedented Brightness , 2015, IEEE Transactions on Electron Devices.
[4] Erdan Gu,et al. Optoelectronic tweezers system for single cell manipulation and fluorescence imaging of live immune cells. , 2014, Optics express.
[5] Robert F. Davis,et al. Cleaning of AlN and GaN surfaces , 1998 .
[6] S. Sze,et al. Physics of Semiconductor Devices: Sze/Physics , 2006 .
[7] W. Balwanz. Plasma Cleaning of Surfaces , 1979 .
[8] Junyi Li,et al. Visible light communication: opportunities, challenges and the path to market , 2013, IEEE Communications Magazine.
[9] Robert K. Henderson,et al. Sub-Micron Lithography Using InGaN Micro-LEDs: Mask-Free Fabrication of LED Arrays , 2012, IEEE Photonics Technology Letters.
[10] M. S. Islim,et al. Towards 10 Gb/s orthogonal frequency division multiplexing-based visible light communication using a GaN violet micro-LED , 2017 .
[11] K. Langer,et al. 513 Mbit/s Visible Light Communications Link Based on DMT-Modulation of a White LED , 2010, Journal of Lightwave Technology.
[12] Jing Li,et al. III-nitride blue microdisplays , 2001 .
[13] H. Grubin. The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.
[14] E. Fred Schubert,et al. Light-Emitting Diodes , 2003 .
[15] Erdan Gu,et al. Size-dependent light output, spectral shift, and self-heating of 400 nm InGaN light-emitting diodes , 2010 .
[16] V. Poher,et al. Matrix-Addressable Micropixellated InGaN Light-Emitting Diodes With Uniform Emission and Increased Light Output , 2007, IEEE Transactions on Electron Devices.
[17] Hongxing Jiang,et al. III-Nitride full-scale high-resolution microdisplays , 2011 .
[18] M. Dawson,et al. Visible-Light Communications Using a CMOS-Controlled Micro-Light- Emitting-Diode Array , 2012, Journal of Lightwave Technology.
[19] H. Haas,et al. A 3-Gb/s Single-LED OFDM-Based Wireless VLC Link Using a Gallium Nitride $\mu{\rm LED}$ , 2014, IEEE Photonics Technology Letters.
[20] I. White,et al. High Bandwidth GaN-Based Micro-LEDs for Multi-Gb/s Visible Light Communications , 2016, IEEE Photonics Technology Letters.
[21] Hongxing Jiang,et al. GaN microdisk light emitting diodes , 2000 .
[22] Stefan Videv,et al. VLC: Beyond point-to-point communication , 2014, IEEE Communications Magazine.
[23] H. Yano,et al. Additive Nitrogen Effects on Oxygen Plasma Downstream Ashing , 1990 .
[24] Kei May Lau,et al. A Novel BLU-Free Full-Color LED Projector Using LED on Silicon Micro-Displays , 2013, IEEE Photonics Technology Letters.
[25] S. Gershman,et al. Plasma Cleaning of Surfaces , 2008 .