How a swing behaves
暂无分享,去创建一个
[1] R. MacKay. Equivariant universality classes , 1984 .
[2] D. Escande,et al. Stochasticity Threshold for Hamiltonians with Zero or One Primary Resonance , 1982 .
[3] A. Lichtenberg,et al. Regular and Stochastic Motion , 1982 .
[4] Leo P. Kadanoff,et al. Scaling for a Critical Kolmogorov-Arnold-Moser Trajectory , 1981 .
[5] M. Feigenbaum. The universal metric properties of nonlinear transformations , 1979 .
[6] B. Chirikov. A universal instability of many-dimensional oscillator systems , 1979 .
[7] M. Feigenbaum. Quantitative universality for a class of nonlinear transformations , 1978 .
[8] Spotswood D. Stoddard,et al. On the Integrability of the Toda Lattice , 1973 .