Low-frequency dynamics in a shock-induced separated flow

The low-frequency unsteadiness in the direct numerical simulation of a Mach 2.9 shock wave/turbulent boundary layer interaction with mean flow separation is analysed using dynamic mode decomposition (DMD). The analysis is applied both to three-dimensional and spanwise-averaged snapshots of the flow. The observed low-frequency DMD modes all share a common structure, characterized by perturbations along the shock, together with streamwise-elongated regions of low and high momentum that originate at the shock foot and extend into the downstream flow. A linear superposition of these modes, with dynamics governed by their corresponding DMD eigenvalues, accurately captures the unsteadiness of the shock. In addition, DMD analysis shows that the downstream regions of low and high momentum are unsteady and that their unsteadiness is linked to the unsteadiness of the shock. The observed flow structures in the downstream flow are reminiscent of Görtler-like vortices that are present in this type of flow due to an underlying centrifugal instability, suggesting a possible physical mechanism for the low-frequency unsteadiness in shock wave/turbulent boundary layer interactions.

[1]  V. Theofilis,et al.  On the origins of unsteadiness and three-dimensionality in a laminar separation bubble , 2000, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[2]  Vassilis Theofilis,et al.  Structural changes of laminar separation bubbles induced by global linear instability , 2010, Journal of Fluid Mechanics.

[3]  Jean-Paul Dussauge,et al.  A simple model for low-frequency unsteadiness in shock-induced separation , 2009, Journal of Fluid Mechanics.

[4]  Noel T. Clemens,et al.  Relationship between upstream turbulent boundary-layer velocity fluctuations and separation shock unsteadiness , 2002 .

[5]  Lionel Rintel Görtler Instability of Boundary Layers , 1971 .

[6]  Kenneth J. Plotkin,et al.  Shock wave oscillation driven by turbulent boundary layer fluctuations , 1975 .

[7]  Nikolaus A. Adams,et al.  IMPLICIT LARGE EDDY SIMULATION OF A SUPERSONIC TURBULENT BOUNDARY LAYER OVER A COMPRESSION-EXPANSION RAMP , 2013, Proceeding of Seventh International Symposium on Turbulence and Shear Flow Phenomena.

[8]  N. Adams,et al.  Large-eddy simulation of shockwave / turbulent-boundary-layer interaction , 2005 .

[9]  Alexander J. Smits,et al.  Turbulent Shear Layers in Supersonic Flow , 1996 .

[10]  J. Williamson Low-storage Runge-Kutta schemes , 1980 .

[11]  J. Eaton,et al.  Low Frequency Unsteadyness of a Reattaching Turbulent Shear Layer , 1982 .

[12]  Nikolaus A. Adams,et al.  Analysis of unsteady behaviour in shockwave turbulent boundary layer interaction , 2012, Journal of Fluid Mechanics.

[13]  E. Schülein,et al.  Steady longitudinal vortices in supersonic turbulent separated flows , 2011, Journal of Fluid Mechanics.

[14]  Minwei Wu,et al.  Direct numerical simulation of supersonic turbulent boundary layer over a compression ramp , 2007 .

[15]  Sergio Pirozzoli,et al.  Direct numerical simulation of impinging shock wave/turbulent boundary layer interaction at M=2.25 , 2006 .

[16]  Noel T. Clemens,et al.  Low-Frequency Unsteadiness of Shock Wave/Turbulent Boundary Layer Interactions , 2014 .

[17]  P. Schmid,et al.  Dynamic mode decomposition of numerical and experimental data , 2008, Journal of Fluid Mechanics.

[18]  M. Pino Martín,et al.  Optimization of nonlinear error for weighted essentially non-oscillatory methods in direct numerical simulations of compressible turbulence , 2007, J. Comput. Phys..

[19]  Steven L. Brunton,et al.  On dynamic mode decomposition: Theory and applications , 2013, 1312.0041.

[20]  Brandon Morgan,et al.  Flow physics and RANS modelling of oblique shock/turbulent boundary layer interaction , 2013, Journal of Fluid Mechanics.

[21]  F. Scarano,et al.  Unsteady aspects of an incident shock wave/turbulent boundary layer interaction , 2009, Journal of Fluid Mechanics.

[22]  In-Won Lee,et al.  Multiple-arrayed pressure measurement for investigation of the unsteady flow structure of a reattaching shear layer , 2002, Journal of Fluid Mechanics.

[23]  Neil D. Sandham,et al.  Low-order stochastic modelling of low-frequency motions in reflected shock-wave/boundary-layer interactions , 2011, Journal of Fluid Mechanics.

[24]  Jean-Paul Dussauge,et al.  Unsteadiness in shock wave boundary layer interactions with separation , 2006 .

[25]  B. R. Noack,et al.  A hierarchy of low-dimensional models for the transient and post-transient cylinder wake , 2003, Journal of Fluid Mechanics.

[26]  S. Priebe,et al.  Direct Numerical Simulation of a eflected-Shock- Wave/Turbulent-Boundary-Layer Interaction , 2009 .

[27]  Matthew Ringuette,et al.  Experimental study of a Mach 3 compression ramp interaction at re_theta = 2400 , 2009 .

[28]  Minwei Wu,et al.  Analysis of shock motion in shockwave and turbulent boundary layer interaction using direct numerical simulation data , 2007, Journal of Fluid Mechanics.

[29]  Neil D. Sandham,et al.  Large-eddy simulation of low-frequency unsteadiness in a turbulent shock-induced separation bubble , 2009 .

[30]  J. Robinet,et al.  Bifurcations in shock-wave/laminar-boundary-layer interaction: global instability approach , 2007, Journal of Fluid Mechanics.

[31]  Mehmet Erengil,et al.  Unsteady wave structure near separation in a Mach 5 compression rampinteraction , 1991 .

[32]  M. Martín,et al.  Low Reynolds Number Effects in a Mach 3 Shock/Turbulent-Boundary-Layer Interaction , 2008 .

[33]  M. Pino Martin,et al.  Low-frequency unsteadiness in shock wave–turbulent boundary layer interaction , 2012, Journal of Fluid Mechanics.

[34]  A. Sidorenko,et al.  Investigation by Particle Image Velocimetry Measurements of Oblique Shock Reflection with Separation , 2008 .

[35]  Gary S. Settles,et al.  Detailed Study of Attached and Separated Compression Corner Flowfields in High Reynolds Number Supersonic Flow , 1979 .

[36]  Nikolaus A. Adams,et al.  Large-eddy simulation of shock-wave/turbulent-boundary-layer interaction , 2006, Journal of Fluid Mechanics.

[37]  Kyuro Sasaki,et al.  Structure of large-scale vortices and unsteady reverse flow in the reattaching zone of a turbulent separation bubble , 1985, Journal of Fluid Mechanics.

[38]  David S. Dolling,et al.  Fifty Years of Shock-Wave/Boundary-Layer Interaction Research: What Next? , 2001 .

[39]  A. Hadjadj Large-Eddy Simulation of Shock/Boundary-Layer Interaction , 2012 .

[40]  Noel T. Clemens,et al.  Low-frequency dynamics of shock-induced separation in a compression ramp interaction , 2009, Journal of Fluid Mechanics.

[41]  F. Scarano,et al.  Effect of Interaction Strength on Unsteadiness in Shock-Wave-Induced Separations , 2010 .

[42]  H. Görtler Instabilität laminarer Grenzschichten an konkaven Wänden gegenüber gewissen dreidimensionalen Störungen , 1941 .

[43]  J. Larsson,et al.  Analysis of unsteady effects in shock/boundary layer interactions , 2010 .

[44]  Clarence W. Rowley,et al.  A Data–Driven Approximation of the Koopman Operator: Extending Dynamic Mode Decomposition , 2014, Journal of Nonlinear Science.

[45]  V. Gregory Weirs,et al.  A bandwidth-optimized WENO scheme for the effective direct numerical simulation of compressible turbulence , 2006, J. Comput. Phys..

[46]  Noel T. Clemens,et al.  Effects of upstream boundary layer on the unsteadiness of shock-induced separation , 2006, Journal of Fluid Mechanics.

[47]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[48]  Alexander J. Smits,et al.  New Experimental Data of STBLI at DNS/LES Accessible Reynolds Numbers , 2005 .

[49]  P. Dupont,et al.  Space and time organization in a shock-induced separated boundary layer , 2006, Journal of Fluid Mechanics.

[50]  J. Larsson,et al.  Confinement effects in shock wave/turbulent boundary layer interactions through wall-modelled large-eddy simulations , 2014, Journal of Fluid Mechanics.

[51]  J. Robinet,et al.  Large-Eddy Simulation of Broadband Unsteadiness in a Shock/Boundary-Layer Interaction , 2013 .

[52]  Minwei Wu,et al.  Direct Numerical Simulation of a Reflected-Shock-Wave/ Turbulent-Boundary-Layer Interaction , 2009 .

[53]  J. Dussauge,et al.  Zones of Influence and Shock Motion in a Shock/Boundary-Layer Interaction , 2012 .

[54]  I. Mezić,et al.  Spectral analysis of nonlinear flows , 2009, Journal of Fluid Mechanics.

[55]  Flint O. Thomas,et al.  On the mechanism of unsteady shock oscillation in shock wave/turbulent boundary layer interactions , 1994 .

[56]  Clarence W. Rowley,et al.  Algorithm 945 , 2014, ACM Trans. Math. Softw..