A holin and an endopeptidase are essential for chitinolytic protein secretion in Serratia marcescens

A holin (ChiW) and an endopeptidase (ChiX) operate in tandem as components of a protein secretion system used by the gram-negative bacterium Serratia marcescens to secrete the chitinolytic machinery.

[1]  J. Tommassen,et al.  Characterization of Pseudomonas aeruginosa Chitinase, a Gradually Secreted Protein , 2001, Journal of bacteriology.

[2]  R. Young,et al.  The N-Terminal Transmembrane Domain of λ S Is Required for Holin but Not Antiholin Function , 2009, Journal of bacteriology.

[3]  W. Hunter,et al.  New secreted toxins and immunity proteins encoded within the Type VI secretion system gene cluster of Serratia marcescens , 2012, Molecular microbiology.

[4]  Amy-Joan L Ham,et al.  Sample preparation and digestion for proteomic analyses using spin filters , 2005, Proteomics.

[5]  U. Strych,et al.  The NucE and NucD lysis proteins are not essential for secretion of the Serratia marcescens extracellular nuclease. , 1999, Microbiology.

[6]  J. Sekiguchi,et al.  Characterization of new l,d-endopeptidase gene product CwlK (previous YcdD) that hydrolyzes peptidoglycan in Bacillus subtilis , 2007, Molecular Genetics and Genomics.

[7]  W. Hol,et al.  The type II secretion system: biogenesis, molecular architecture and mechanism , 2012, Nature Reviews Microbiology.

[8]  H. Hodak,et al.  A Salmonella Typhi homologue of bacteriophage muramidases controls typhoid toxin secretion , 2013, EMBO reports.

[9]  Steven D. Mahlen Serratia Infections: from Military Experiments to Current Practice , 2011, Clinical Microbiology Reviews.

[10]  B. Ma,et al.  Role of chitin and chitinase/chitinase-like proteins in inflammation, tissue remodeling, and injury. , 2011, Annual review of physiology.

[11]  I. Just,et al.  Release of TcdA and TcdB from Clostridium difficile cdi 630 is not affected by functional inactivation of the tcdE gene. , 2012, Microbial pathogenesis.

[12]  J. Swedlow,et al.  Phosphorylated DegU Manipulates Cell Fate Differentiation in the Bacillus subtilis Biofilm , 2013, Journal of bacteriology.

[13]  Edie M. Scheurwater,et al.  Lytic transglycosylases: bacterial space-making autolysins. , 2008, The international journal of biochemistry & cell biology.

[14]  M. Regué,et al.  LysR-type Transcriptional Regulator ChiR Is Essential for Production of All Chitinases and a Chitin-Binding Protein, CBP21, in Serratia marcescens 2170 , 2001, Bioscience, biotechnology, and biochemistry.

[15]  Ry Young,et al.  Rz/Rz1 lysis gene equivalents in phages of Gram-negative hosts. , 2007, Journal of molecular biology.

[16]  Uwe Kärst,et al.  Comparative proteome analysis of secretory proteins from pathogenic and nonpathogenic Listeria species , 2005, Proteomics.

[17]  Tracy Palmer,et al.  The twin-arginine translocation (Tat) protein export pathway , 2012, Nature Reviews Microbiology.

[18]  A. Edwards,et al.  The superoxide dismutase SodA is targeted to the periplasm in a SecA‐dependent manner by a novel mechanism , 2011, Molecular microbiology.

[19]  Milton H Saier,et al.  Topological and phylogenetic analyses of bacterial holin families and superfamilies. , 2013, Biochimica et biophysica acta.

[20]  Tracy Palmer,et al.  Secretion by numbers: protein traffic in prokaryotes , 2006, Molecular microbiology.

[21]  Udo Bläsi,et al.  Biochemical and Genetic Evidence for Three Transmembrane Domains in the Class I Holin, λ S* , 2000, The Journal of Biological Chemistry.

[22]  D. Belin,et al.  Expression of the endogenous type II secretion pathway in Escherichia coli leads to chitinase secretion , 2000, The EMBO journal.

[23]  M. Merrick,et al.  Ammonium Sensing in Escherichia coli , 2004, Journal of Biological Chemistry.

[24]  Ken Cook,et al.  Hydrophilic Strong Anion Exchange (hSAX) Chromatography for Highly Orthogonal Peptide Separation of Complex Proteomes , 2013, Journal of proteome research.

[25]  A. Hejazi,et al.  The use of RAPD-PCR as a typing method for Serratia marcescens. , 1997, Journal of medical microbiology.

[26]  B. Synstad,et al.  Structure of the D142N mutant of the family 18 chitinase ChiB from Serratia marcescens and its complex with allosamidin. , 2004, Biochimica et biophysica acta.

[27]  S. Mirrett,et al.  Topics in Clinical Microbiology , 1982, Infection Control.

[28]  D. Shcherbo,et al.  Bright far-red fluorescent protein for whole-body imaging , 2007, Nature Methods.

[29]  G. Ihler,et al.  Genetic analysis of extracellular proteins of Serratia marcescens , 1988, Journal of bacteriology.

[30]  B. Henrissat,et al.  The third chitinase gene (chiC) of Serratia marcescens 2170 and the relationship of its product to other bacterial chitinases. , 1999, The Biochemical journal.

[31]  B. Synstad,et al.  The Non-catalytic Chitin-binding Protein CBP21 from Serratia marcescens Is Essential for Chitin Degradation*♦ , 2005, Journal of Biological Chemistry.

[32]  G. Koraimann,et al.  Lytic transglycosylases in macromolecular transport systems of Gram-negative bacteria , 2003, Cellular and Molecular Life Sciences CMLS.

[33]  V. de Lorenzo,et al.  Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in gram-negative eubacteria , 1990, Journal of bacteriology.

[34]  M. Mann,et al.  Universal sample preparation method for proteome analysis , 2009, Nature Methods.

[35]  U. Bläsi,et al.  The Serratia marcescens NucE protein functions as a holin in Escherichia coli , 1997, Journal of Bacteriology.

[36]  Julian Parkhill,et al.  Genome Evolution and Plasticity of Serratia marcescens, an Important Multidrug-Resistant Nosocomial Pathogen , 2014, Genome biology and evolution.

[37]  G. Venema,et al.  Chitinase B from Serratia marcescens BJL200 is exported to the periplasm without processing. , 1995, Microbiology.

[38]  M. Mann,et al.  MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification , 2008, Nature Biotechnology.

[39]  B. Dupuy,et al.  Secretion of Clostridium difficile Toxins A and B Requires the Holin-like Protein TcdE , 2012, PLoS pathogens.

[40]  G. Cornelis,et al.  A wide-host-range suicide vector for improving reverse genetics in gram-negative bacteria: inactivation of the blaA gene of Yersinia enterocolitica. , 1991, Gene.

[41]  N. Barnich,et al.  Potential role of chitinases and chitin-binding proteins in host-microbial interactions during the development of intestinal inflammation. , 2011, Histology and histopathology.

[42]  J. Collet,et al.  Folding mechanisms of periplasmic proteins. , 2014, Biochimica et biophysica acta.

[43]  A. Oppenheim,et al.  High resolution structural analyses of mutant chitinase A complexes with substrates provide new insight into the mechanism of catalysis. , 2001, Biochemistry.

[44]  D. V. van Aalten,et al.  Crystal Structure and Binding Properties of the Serratia marcescens Chitin-binding Protein CBP21* , 2005, Journal of Biological Chemistry.

[45]  B. Synstad,et al.  Comparative studies of chitinases A, B and C from Serratia marcescens , 2006, Microbiology.

[46]  K. Kenne,et al.  Insect pathogenic properties of Serratia marcescens: phage-resistant mutants with a decreased resistance to Cecropia immunity and a decreased virulence to Drosophila. , 1980, Journal of general microbiology.

[47]  T. Palmer,et al.  Coordinating assembly and export of complex bacterial proteins , 2004, The EMBO journal.

[48]  D. Belin,et al.  Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter , 1995, Journal of bacteriology.

[49]  M. Palcic,et al.  Bacterial chitinases and chitin-binding proteins as virulence factors. , 2013, Microbiology.