A 300-nW Sensitive, 50-nA DC-DC Converter for Energy Harvesting Applications

A maximum-power-point-tracking DC-DC boost converter to harvest energy from sub- μW power sources is presented. For available input-power levels below 1 μW, voltage boosting is achieved by operating all circuits in the sub-threshold region, and by switching the DC-DC converter at tens of Hz, thereby reducing switching losses. The paper further explores the possibility of energizing the DC-DC inductor for an optimum duration, such that switching and resistive losses are minimized. The sub- μW energy harvesting circuit uses an area of 0.2 mm2 on a standard 180 nm CMOS process, and utilizes an auxiliary voltage source for start-up. The designed and fabricated system is more than 50% efficient when the available power is greater than 2 μW. The circuit can harvest energy whenever the available power is more than 0.3 μW. Efficiency at 0.3 μW is 25%, at 0.5 μW is 37% and at 1 μW is 48%. The complete IC consumes 50 nA for internal operations and the input voltage can be as low as 70 mV.

[1]  Bernabé Linares-Barranco,et al.  On the design and characterization of femtoampere current-mode circuits , 2003, IEEE J. Solid State Circuits.

[2]  David Blaauw,et al.  3 A 3 nW Fully Integrated Energy Harvester Based on Self-Oscillating Switched-Capacitor DC-DC Converter , 2014 .

[3]  J. Fellrath,et al.  CMOS analog integrated circuits based on weak inversion operations , 1977 .

[4]  H. Oguey,et al.  CMOS Current Reference without Resistance , 1996, ESSCIRC '96: Proceedings of the 22nd European Solid-State Circuits Conference.

[5]  Koichi Ishida,et al.  Startup Techniques for 95 mV Step-Up Converter by Capacitor Pass-On Scheme and ${\rm V}_{\rm TH}$-Tuned Oscillator With Fixed Charge Programming , 2012, IEEE Journal of Solid-State Circuits.

[6]  Anantha P. Chandrakasan,et al.  A 1.1 nW Energy-Harvesting System with 544 pW Quiescent Power for Next-Generation Implants , 2014, IEEE Journal of Solid-State Circuits.

[7]  Anantha Chandrakasan,et al.  An efficient piezoelectric energy-harvesting interface circuit using a bias-flip rectifier and shared inductor , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[8]  David D. Wentzloff,et al.  A 10 mV-Input Boost Converter With Inductor Peak Current Control and Zero Detection for Thermoelectric and Solar Energy Harvesting With 220 mV Cold-Start and $-$14.5 dBm, 915 MHz RF Kick-Start , 2015, IEEE Journal of Solid-State Circuits.

[9]  Giuseppe Iannaccone,et al.  A 2.6 nW, 0.45 V Temperature-Compensated Subthreshold CMOS Voltage Reference , 2011, IEEE Journal of Solid-State Circuits.

[10]  G. Cho,et al.  A 40 mV Transformer-Reuse Self-Startup Boost Converter With MPPT Control for Thermoelectric Energy Harvesting , 2012, IEEE Journal of Solid-State Circuits.

[11]  Naveen Verma,et al.  Design considerations for ultra-low energy wireless microsensor nodes , 2005, IEEE Transactions on Computers.

[12]  Anantha Chandrakasan,et al.  A Battery-Less Thermoelectric Energy Harvesting Interface Circuit With 35 mV Startup Voltage , 2010, IEEE Journal of Solid-State Circuits.

[13]  Chris Van Hoof,et al.  5μW-to-10mW input power range inductive boost converter for indoor photovoltaic energy harvesting with integrated maximum power point tracking algorithm , 2010, 2011 IEEE International Solid-State Circuits Conference.

[14]  Liang-Hung Lu,et al.  50 mV-Input Batteryless Boost Converter for Thermal Energy Harvesting , 2013, IEEE Journal of Solid-State Circuits.

[15]  Kai Strunz,et al.  A 20 mV Input Boost Converter With Efficient Digital Control for Thermoelectric Energy Harvesting , 2010, IEEE Journal of Solid-State Circuits.

[16]  Anantha Chandrakasan,et al.  A 330nA energy-harvesting charger with battery management for solar and thermoelectric energy harvesting , 2012, 2012 IEEE International Solid-State Circuits Conference.

[17]  Anantha Chandrakasan,et al.  23.2 A 1.1nW energy harvesting system with 544pW quiescent power for next-generation implants , 2014, 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC).

[18]  David Blaauw,et al.  An Ultra-Low Power Fully Integrated Energy Harvester Based on Self-Oscillating Switched-Capacitor Voltage Doubler , 2014, IEEE Journal of Solid-State Circuits.