Optical efficiency of image sensor pixels.

The ability to reproduce a high-quality image depends strongly on the image sensor light sensitivity. This sensitivity depends, in turn, on the materials, the circuitry, and the optical properties of the pixel. We calculate the optical efficiency of a complementary metal oxide semiconductor (CMOS) image sensor pixel by using a geometrical-optics phase-space approach. We compare the theoretical predictions with measurements made by using a CMOS digital pixel sensor, and we find them to be in agreement within 3%. Finally, we show how to use these optical efficiency calculations to trade off image sensor pixel sensitivity and functionality as CMOS process technology scales.

[1]  Eric R. Fossum,et al.  Active pixel sensors: are CCDs dinosaurs? , 1993, Electronic Imaging.

[2]  A. Walther Gabor’s Theorem and Energy Transfer through Lenses , 1967 .

[3]  W. H. Steel Luminosity, throughput, or etendue? , 1974, Applied optics.

[4]  Abbas El Gamal,et al.  Characterization of CMOS image sensors with Nyquist rate pixel-level ADC , 1999, Electronic Imaging.

[5]  Zeev Zalevsky,et al.  Space–bandwidth product of optical signals and systems , 1996 .

[6]  Mj Martin Bastiaans Wigner distribution function and its application to first-order optics , 1979 .

[7]  Mj Martin Bastiaans The Wigner distribution function applied to optical signals and systems , 1978 .

[8]  R. J. Pegis I The Modern Development of Hamiltonian Optics , 1961 .

[9]  F. Abelès Recherches sur la propagation des ondes électromagnétiques sinusoïdales dans les milieux stratifiés - Application aux couches minces , 1950 .

[10]  Barry Fowler,et al.  A 640×512 CMOS Image Sensor with Ultra Wide Dynamic Range Floating-Point Pixel-Level ADC , 1999 .

[11]  Daniela Dragoman,et al.  I: The Wigner Distribution Function in Optics and Optoelectronics , 1997 .

[12]  H. Baltes,et al.  High accuracy modeling of photodiode quantum efficiency. , 1989, Applied optics.

[13]  John A. Penkethman Calibrations and idiosyncrasies of microlensed CCD cameras , 1999, Optics & Photonics.

[14]  Brian A. Wandell,et al.  Multiple Capture Single Image Architecture with a CMOS Sensor , 1999 .

[15]  Nitin Sampat,et al.  Sensors and Camera Systems for Scientific, Industrial, and Digital Photography Applications , 2000 .

[16]  A. El Gamal,et al.  A 640/spl times/512 CMOS image sensor with ultra wide dynamic range floating-point pixel-level ADC , 1999, 1999 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. ISSCC. First Edition (Cat. No.99CH36278).

[17]  J. Goodman Introduction to Fourier optics , 1969 .

[18]  H. Mutoh,et al.  Simulation for 3-D optical and electrical analysis of CCD , 1997 .

[19]  R. Winston Light Collection within the Framework of Geometrical Optics , 1970 .

[20]  Ronald N. Bracewell,et al.  The Fourier Transform and Its Applications , 1966 .

[21]  Peter B. Catrysse,et al.  QE reduction due to pixel vignetting in CMOS image sensors , 2000, Electronic Imaging.

[22]  Taher Daud,et al.  Charge-coupled-device response to electron beam energies of less than 1 keV up to 20 keV , 1987 .

[23]  Abbas El Gamal,et al.  Method for estimating quantum efficiency for CMOS image sensors , 1998, Electronic Imaging.

[24]  K. Ikemura Development and application , 1971 .