Wave-matching method for mode analysis of dielectric waveguides

Frequently the cross-section of a longitudinally homogeneous dielectric waveguide may be decomposed into rectangles with constant permittivity. For points inside these rectangles the wave equation for modal fields is solved analytically by expanding into functions with harmonic or exponential dependence on the transverse coordinates. Minimization of a least-squares expression for the remaining misfit on the boundary lines allows us to determine propagation constants and fields for guided modes. Semivectorial calculations for two sets of rib waveguides and the centre sections of a directional coupler and an MMI device show very good agreement with results found in the literature.

[1]  E.C.M. Pennings,et al.  Optical multi-mode interference devices based on self-imaging: principles and applications , 1995 .

[2]  M. S. Stern Semivectorial polarised finite difference method for optical waveguides with arbitrary index profiles , 1988 .

[3]  M. S. Stern,et al.  Analysis of the spectral index method for vector modes of rib waveguides , 1990 .

[4]  P. N. Robson,et al.  Rib waveguide theory by the spectral index method , 1990 .

[5]  Anurag Sharma,et al.  Single-mode optical waveguides and directional couplers with rectangular cross section: a simple and accurate method of analysis , 1988 .

[6]  G. R. Hadley,et al.  Full-vector waveguide modeling using an iterative finite-difference method with transparent boundary conditions , 1995 .

[7]  Charles Howard Henry,et al.  Solution of the scalar wave equation for arbitrarily shaped dielectric waveguides by two-dimensional Fourier analysis , 1989 .

[8]  B. M. A. Rahman,et al.  Vector-H finite element solution of GaAs/GaAlAs rib waveguides , 1985 .

[9]  Analysis of nonreciprocal phase shifters for integrated optics by the Galerkin method , 1995 .

[10]  R. Pregla,et al.  Method of lines for the analysis of strip-loaded optical waveguides , 1991 .

[11]  G. M. Berry,et al.  Analysis of optical rib self-imaging multimode interference (MMI) waveguide devices using the discrete spectral index method , 1995 .

[12]  Pao-Lo Liu,et al.  The semivectorial beam propagation method , 1993 .

[13]  Semivectorial Helmholtz beam propagation by Lanczos reduction , 1993 .

[14]  A new approach to scalar and semivector mode analysis of optical waveguides , 1996 .

[15]  Ed Anderson,et al.  LAPACK Users' Guide , 1995 .

[16]  H Melchior,et al.  General self-imaging properties in N × N multimode interference couplers including phase relations. , 1994, Applied optics.

[17]  M. S. Stern Semivectorial polarised H˜ field solutions for dielectric waveguides with arbitrary index profiles , 1988 .

[18]  William H. Press,et al.  Numerical Recipes in C, 2nd Edition , 1992 .

[19]  R. Ulrich,et al.  Self‐imaging in homogeneous planar optical waveguides , 1975 .

[20]  A. Sudbø,et al.  Film mode matching: a versatile numerical method for vector mode field calculations in dielectric waveguides , 1993 .

[21]  Editors , 1986, Brain Research Bulletin.

[22]  B. M. A. Rahman,et al.  Accurate analysis of MMI devices with two-dimensional confinement , 1996 .

[23]  Mk Meint Smit,et al.  Planar monomode optical couplers based on multimode interference effects , 1992 .

[24]  S. J. Hewlett,et al.  Fourier decomposition method applied to mapped infinite domains: scalar analysis of dielectric waveguides down to modal cutoff , 1995 .

[25]  J. B. Davies,et al.  A Least-Squares Boundary Residual Method for the Numerical Solution of Scattering Problems , 1973 .

[26]  P. Wei,et al.  A new iterative method for the analysis of longitudinally invariant waveguide couplers , 1994 .

[27]  Fritz Arndt,et al.  Finite-Difference Analysis of Rectangular Dielectric Waveguide Structures , 1986 .

[28]  B. Rahman,et al.  Finite-element solution of integrated optical waveguides , 1984 .

[29]  C. Vassallo 1993--1995 Optical mode solvers , 1997 .

[30]  R. Ridder,et al.  Modal fields calculation using the finite difference beam propagation method , 1994 .

[31]  H. A. Haus,et al.  Simple variational approach to optical rib waveguides , 1990, Integrated Photonics Research.

[32]  R. Ridder,et al.  Efficient semivectorial mode solvers , 1997 .

[33]  H. Unger,et al.  Analysis of vectorial mode fields in optical waveguides by a new finite difference method , 1994 .

[34]  K. Chiang Review of numerical and approximate methods for the modal analysis of general optical dielectric waveguides , 1994 .

[35]  Edgar Voges,et al.  Three-dimensional semi-vectorial wide-angle beam propagation method , 1994 .

[36]  G. Cerri,et al.  Variational analysis of the dielectric rib waveguide using the concept of 'transition function' and including edge singularities , 1991 .

[37]  R. K. Varshney,et al.  A simple and accurate model analysis of strip-loaded optical waveguides with various index profiles , 1988 .

[38]  Masanori Koshiba,et al.  A vector finite element method with the high-order mixed-interpolation-type triangular elements for optical waveguiding problems , 1994 .

[39]  Kin Seng Chiang,et al.  Analysis of the effective-index method for the vector modes of rectangular-core dielectric waveguides , 1996 .

[40]  B. M. A. Rahman,et al.  Analysis of optical waveguide discontinuities , 1988 .

[41]  D. R. Wight,et al.  Novel 1‐to‐N way integrated optical beam splitters using symmetric mode mixing in GaAs/AlGaAs multimode waveguides , 1992 .

[42]  H. Hoekstra An economic method for the solution of the scalar wave equation for arbitrary shaped optical waveguides , 1990 .

[43]  Anand Gopinath,et al.  Analysis of dielectric guides by vector transverse magnetic field finite elements , 1993 .