Extinction of solutions of semilinear higher order parabolic equations with degenerate absorption potential

We study the first vanishing time for solutions of the Cauchy–Dirichlet problem for the 2m-order (m ≥ 1) semilinear parabolic equation $${u_t + Lu + a(x) |u|^{q-1}u=0,\,0 < q < 1}$$ with a(x) ≥ 0 bounded in the bounded domain $${\Omega \subset \mathbb R^N}$$. We prove that if $${N \ne 2m}$$ and $${\int_0^1 s^{-1} (\mathop{\rm meas}\nolimits \{x \in \Omega : |a(x)| \leq s \})^\theta {\rm d}s < \infty,\ \theta=\min\left(\frac{2m}N,1\right)}$$, then the solution u vanishes in a finite time. When N = 2m, the same property holds if $${\int_0^1 s^{-1} \left( \mathop{\rm meas}\nolimits \{x \in \Omega : |a(x)| \leq s \} \right) \ln \left( \mathop{\rm meas}\nolimits \{x \in \Omega : |a(x)| \leq s \} \right) {\rm d}s > - \infty}$$.

[1]  Bernard Helffer,et al.  Semi-Classical Analysis for the Schrödinger Operator and Applications , 1988 .

[2]  R. Kersner,et al.  Instantaneous Shrinking of the Support of Energy Solutions , 1996 .

[3]  Catherine Bandle,et al.  The formation of the dead core in parabolic reaction-diffusion problems , 1984 .

[4]  Neil S. Trudinger,et al.  On Imbeddings into Orlicz Spaces and Some Applications , 1967 .

[5]  L. Véron,et al.  Asymptotic behaviour of solutions of some nonlinear parabolic or elliptic equations , 1997 .

[6]  F. Smithies,et al.  Convex Functions and Orlicz Spaces , 1962, The Mathematical Gazette.

[7]  A. Shishkov Dead cores and instantaneous compactification of the supports of energy solutions of quasilinear parabolic equations of arbitrary order , 1999 .

[8]  R. Kersner,et al.  The Nonlinear Heat Equation with Absorption: Effects of Variable Coefficients* , 1992 .

[9]  F. John Partial differential equations , 1967 .

[10]  I. V. Skrypnik Methods for Analysis of Nonlinear Elliptic Boundary Value Problems , 1994 .

[11]  L. Payne,et al.  Improperly Posed Problems in Partial Differential Equations , 1987 .

[12]  Hiroshi Matano,et al.  Finite-point extinction and continuity of interfaces in a nonlinear diffusion equation with strong absorption. , 1995 .

[13]  E. Lieb,et al.  Inequalities for the Moments of the Eigenvalues of the Schrodinger Hamiltonian and Their Relation to Sobolev Inequalities , 2002 .

[14]  R. Kersner Nonlinear Heat Conduction with Absorption: Space Localization and Extinction in Finite Time , 1983 .

[15]  A. S. Kalashnikov The propagation of disturbances in problems of non-linear heat conduction with absorption , 1974 .

[16]  Junjie Li QUALITATIVE PROPERTIES OF SOLUTIONS TO SEMILINEAR HEAT EQUATIONS WITH SINGULAR INITIAL DATA , 2004 .

[17]  B. Straughan,et al.  Instability, nonexistence and weighted energy methods in fluid dynamics and related theories , 1982 .

[18]  Barry F. Knerr,et al.  The behavior of the support of solutions of the equation of nonlinear heat conduction with absorption in one dimension , 1979 .

[19]  E. Boschi Recensioni: J. L. Lions - Quelques méthodes de résolution des problémes aux limites non linéaires. Dunod, Gauthier-Vi;;ars, Paris, 1969; , 1971 .

[20]  J. Lions Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .

[21]  Andrey Shishkov,et al.  Long-time extinction of solutions of some semilinear parabolic equations , 2007, 0805.2314.

[22]  A. Friedman,et al.  Extinction properties of semilinear heat equations with strong absorption , 1987 .

[23]  Jun-jie Li Qualitative properties for solutions of semilinear heat equations with strong absorption , 2003 .

[24]  B. Helffer,et al.  Long-time vanishing properties of solutions of some semilinear parabolic equations , 2001 .

[25]  Y. Belaud Asymptotic Estimates for a Variational Problem Involving a Quasilinear Operator in the Semi-Classical Limit , 2004 .

[26]  L. Véron,et al.  Local vanishing properties of solutions of elliptic and parabolic quasilinear equations , 1985 .

[27]  Francisco Bernis Finite speed of propagation and asymptotic rates for some nonlinear higher order parabolic equations with absorption , 1986, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.