Quantum Criticality Stabilizes High Tc Superconductivity Against Competing Symmetry-Breaking Instabilities

[1]  M. Kennett,et al.  Precision Search for Magnetic Order in the Pseudogap Regime of La2 xSrxCuO4 by Muon Spin Relaxation , 2012, 1201.5406.

[2]  Horst Rogalla,et al.  100 years of superconductivity , 2011 .

[3]  N. Johnson,et al.  Pairing glue activation in cuprates within the quantum critical regime , 2011, 1111.5033.

[4]  P. Hirschfeld,et al.  Evolution of symmetry and structure of the gap in iron-based superconductors with doping and interactions , 2011, 1109.0498.

[5]  T. Feder Convincing US states to require physics , 2011 .

[6]  J. Zaanen,et al.  Observing the origin of superconductivity in quantum critical metals , 2011, 1105.5377.

[7]  R. McKenzie,et al.  Consistent description of the metallic phase of overdoped cuprate superconductors as an anisotropic marginal Fermi liquid. , 2011, Physical review letters.

[8]  S. Pathak,et al.  Role of the van Hove singularity in the quantum criticality of the Hubbard model , 2011, 1104.3261.

[9]  R. V. Aguilar,et al.  Temporal correlations of superconductivity above the transition temperature in La 2−x Sr x CuO 4 probed by terahertz spectroscopy , 2011, 1110.2097.

[10]  A. Bianconi,et al.  Fractal Structure Favoring Superconductivity at High Temperatures in a Stack of Membranes Near a Strain Quantum Critical Point , 2011 .

[11]  K. Dahmen,et al.  Using disorder to detect locally ordered electron nematics via hysteresis. , 2011, Nature communications.

[12]  J. Roos,et al.  Absence of orbital currents in superconducting YBa2Cu4O8 using a zeeman-perturbed nuclear-quadrupole-resonance technique. , 2011, Physical review letters.

[13]  D. van der Marel Superconductivity: Beware of the pseudogap , 2011, 1102.3990.

[14]  J. Zaanen,et al.  Proximity of the superconducting dome and the quantum critical point in the two-dimensional Hubbard model. , 2011, Physical review letters.

[15]  M. Edalati,et al.  Dynamical gap and cupratelike physics from holography , 2010, 1012.3751.

[16]  G. Gu,et al.  Fluctuating stripes at the onset of the pseudogap in the high-Tc superconductor Bi2Sr2CaCu2O8+x , 2010, Nature.

[17]  N. Johnson,et al.  Equivalent dynamical complexity in a many-body quantum and collective human system , 2010, 1011.6398.

[18]  G. Aeppli,et al.  Scale-free structural organization of oxygen interstitials in La2CuO4+y , 2010, Nature.

[19]  R. Mole,et al.  Hidden magnetic excitation in the pseudogap phase of a high-Tc superconductor , 2010, Nature.

[20]  J. Sethna,et al.  Intra-unit-cell electronic nematicity of the high-Tc copper-oxide pseudogap states , 2010, Nature.

[21]  H. Alloul,et al.  Superconducting fluctuations, pseudogap and phase diagram in cuprates , 2010, 1006.3165.

[22]  T. Kondo,et al.  Disentangling Cooper-pair formation above the transition temperature from the pseudogap state in the cuprates , 2010, 1005.5309.

[23]  J. Ashkenazi A Theory for the High-Tc Cuprates: Anomalous Normal-State and Spectroscopic Properties, Phase Diagram, and Pairing , 2009, 0912.4735.

[24]  L. Taillefer,et al.  Broken rotational symmetry in the pseudogap phase of a high-Tc superconductor , 2009, Nature.

[25]  N. Ong,et al.  Diamagnetism and Cooper pairing above T c in cuprates , 2009, 0906.1823.

[26]  S. Wolf,et al.  Colloquium: Electron-lattice interaction and its impact on highTcsuperconductivity , 2009 .

[27]  J. Ashkenazi A Unified Theory for the Cuprates, Iron-Based and Similar Superconducting Systems: Application for Spin and Charge Excitations in the Hole-Doped Cuprates , 2008, 0809.4237.

[28]  C. Şen,et al.  Quantum critical point at finite doping in the 2D Hubbard model: a dynamical cluster quantum Monte Carlo study. , 2008, Physical review letters.

[29]  H. Mook,et al.  Magnetic order close to superconductivity in the iron-based layered LaO1-xFxFeAs systems , 2008, Nature.

[30]  C. Cancellieri,et al.  Direct angle resolved photoelectron spectroscopy (DARPES) on high-Tc films: doping, strains, Fermi surface topology and superconductivity - art. no. 012040 , 2008 .

[31]  R. Birgeneau,et al.  Disappearance of antiferromagnetic spin excitations in overdoped La2-xSrxCuO4. , 2006, Physical review letters.

[32]  A. Schofield,et al.  Quantum criticality , 2005, Nature.

[33]  L. Regnault,et al.  Stripe order, depinning, and fluctuations in La$_{1.875}$Ba$_{0.125}$CuO$_{4}$ and La$_{1.875}$Ba$_{0.075}$Sr$_{0.050}$CuO$_{4}$ , 2004, cond-mat/0403396.

[34]  G. Deutscher,et al.  High Tc: Top Down or Bottom Up? , 2000 .

[35]  M. Kastner,et al.  Doping dependence of the spatially modulated dynamical spin correlations and the superconducting-transition temperature in La 2-x Sr x CuO 4 , 1998 .

[36]  C. Castellani,et al.  The charge-density-wave quantum-critical-point scenario , 1997 .

[37]  V. J. Emery,et al.  Electronic liquid-crystal phases of a doped Mott insulator , 1997, Nature.

[38]  Nakamura,et al.  Neutron-scattering study of stripe-phase order of holes and spins in La1.48Nd0.4Sr0.12CuO4. , 1996, Physical review. B, Condensed matter.

[39]  V. J. Emery,et al.  Frustrated electronic phase separation and high-temperature superconductors , 1993 .

[40]  Littlewood,et al.  Phenomenology of the normal state of Cu-O high-temperature superconductors. , 1989, Physical review letters.

[41]  White,et al.  Conserving approximations for strongly correlated electron systems: Bethe-Salpeter equation and dynamics for the two-dimensional Hubbard model. , 1989, Physical review letters.

[42]  L. Testardi Structural instability and superconductivity in A-15 compounds , 1975 .

[43]  S. Barnes Theory of electron spin resonance of magnetic ions in metals , 1981 .