Influence of low-plasticity ball burnishing on the high-cycle fatigue strength of medium carbon AISI 1045 steel

[1]  Zheng Qiang Tang,et al.  Analytical prediction and experimental verification of surface roughness during the burnishing process , 2012 .

[2]  Philippe Gilles,et al.  Modelling of multiple impacts for the prediction of distortions and residual stresses induced by ultrasonic shot peening (USP) , 2012 .

[3]  J. Ocaña,et al.  Laser shock peening without absorbent coating (LSPwC) effect on 3D surface topography and mechanical properties of 6082-T651 Al alloy , 2012 .

[4]  Yukitaka Murakami,et al.  Material defects as the basis of fatigue design , 2012 .

[5]  L. Wagner,et al.  Investigation of laser shock peening effects on residual stress state and fatigue performance of titanium alloys , 2012 .

[6]  Aitzol Lamikiz,et al.  Surface improvement of shafts by the deep ball-burnishing technique , 2012 .

[7]  Friedrich Bleicher,et al.  Mechanism of surface modification using machine hammer peening technology , 2012 .

[8]  D. Meyer,et al.  Cryogenic deep rolling – An energy based approach for enhanced cold surface hardening , 2012 .

[9]  Michael P Sealy,et al.  Significant improvement of corrosion resistance of biodegradable metallic implants processed by laser shock peening , 2012 .

[10]  Lijun Wang,et al.  Finite element modeling of ultrasonic surface rolling process , 2011 .

[11]  Aitzol Lamikiz,et al.  Influence of laser polishing on the high cycle fatigue strength of medium carbon AISI 1045 steel , 2011 .

[12]  M. Salahshoor,et al.  Surface integrity of biodegradable Magnesium-Calcium orthopedic implant by burnishing. , 2011, Journal of the mechanical behavior of biomedical materials.

[13]  G. N. Labeas,et al.  Numerical modelling of shot peening process and corresponding products: Residual stress, surface roughness and cold work prediction , 2011 .

[14]  Yuji Sano,et al.  Surface layer properties and fatigue behavior in Al 7075‐T73 and Ti‐6Al‐4V , 2011 .

[15]  L. N. López de Lacalle,et al.  Five-Axis Machining and Burnishing of Complex Parts for the Improvement of Surface Roughness , 2011 .

[16]  L. Wagner,et al.  Investigation on the surface and near-surface characteristics of Ti–2.5Cu after various mechanical surface treatments , 2011 .

[17]  Paul Mativenga,et al.  A comparative study of material phase effects on micro-machinability of multiphase materials , 2010 .

[18]  Fang-Jung Shiou,et al.  Precision surface finish of the mold steel PDS5 using an innovative ball burnishing tool embedded with a load cell , 2010 .

[19]  Aitzol Lamikiz,et al.  Laser polishing of tool steel with CO2 laser and high-power diode laser , 2010 .

[20]  J. T. Maximov,et al.  Spherical motion burnishing implemented on lathes , 2009 .

[21]  P. Scardi,et al.  Reverse bending fatigue of shot peened 7075-T651 aluminium alloy: The role of residual stress relaxation , 2009 .

[22]  J. S. Andrade,et al.  Universality behind Basquin's Law of Fatigue. , 2008, Physical review letters.

[23]  Aitzol Lamikiz,et al.  Laser polishing techniques for roughness improvement on metallic surfaces , 2007 .

[24]  R. C. McClung,et al.  A literature survey on the stability and significance of residual stresses during fatigue , 2007 .

[25]  Yung C. Shin,et al.  Laser-assisted burnishing of metals , 2007 .

[26]  R. A. González Análisis de fatiga en máquinas , 2005 .

[27]  Gerry Byrne,et al.  A review of the use of high power diode lasers in surface hardening , 2004 .

[28]  John T. Cammett,et al.  The Influence of Surface Enhancement by Low Plasticity Burnishing on the Corrosion Fatigue Performance of AA7075-T6 , 2004 .

[29]  H. Spies,et al.  Fatigue Strength of Heat‐treatable Steel Under Static Multiaxial Compression Stresses , 2004 .

[30]  H. Soyama Introduction of Compressive Residual Stress Using a Cavitating Jet in Air , 2004 .

[31]  W. Zhuang,et al.  Mechanical Surface Treatment Technologies for Gas Turbine Engine Components , 2003 .

[32]  Hitoshi Soyama,et al.  Cavitation shotless peening for improvement of fatigue strength of carbonized steel , 2003 .

[33]  Y. Mai,et al.  Laser shock processing and its effects on microstructure and properties of metal alloys: a review , 2002 .

[34]  Herman Jacobus Cornelis Voorwald,et al.  An evaluation of shot peening, residual stress and stress relaxation on the fatigue life of AISI 4340 steel , 2002 .

[35]  Gary R. Halford,et al.  Investigation of residual stress relaxation under cyclic load , 2001 .

[36]  V. Schulze,et al.  Effects of warm peening on fatigue life and relaxation behaviour of residual stresses in AISI 4140 steel , 2000 .

[37]  Paul S. Prevéy,et al.  FOD RESISTANCE AND FATIGUE CRACK ARREST IN LOW PLASTICITY BURNISHED IN718 , 2000 .

[38]  Bastien Weber,et al.  Fatigue multiaxiale des structures industrielles sous chargement quelconque , 1999 .

[39]  Berthold Scholtes,et al.  Cyclic deformation and near surface microstructures of normalized shot peened steel SAE 1045 , 1998 .

[40]  Laurent Berthe,et al.  Laser-shock processing of aluminium-coated 55C1 steel in water-confinement regime, characterization and application to high-cycle fatigue behaviour , 1998 .

[41]  Chun H. Wang,et al.  Life Prediction Techniques for Variable Amplitude Multiaxial Fatigue—Part 1: Theories , 1996 .

[42]  Robert L. Norton,et al.  Machine Design: An Integrated Approach , 1996 .

[43]  Robert C. Juvinall,et al.  Fundamentals of machine component design , 1983 .

[44]  Michael Bass,et al.  Fatigue resistance of laser heat-treated 1045 carbon steel , 1981 .

[45]  J. H. Faupel,et al.  Engineering design: A synthesis of stress analysis and materials engineering , 1981 .

[46]  Joseph Edward Shigley,et al.  Mechanical engineering design , 1972 .

[47]  L. Coffin,et al.  Cyclic Stress-Strain Behavior—Analysis, Experimentation, and Failure Prediction , 1971 .

[48]  Tim Topper,et al.  Engineering Analysis of the Inelastic Stress Response of a Structural Metal Under Variable Cyclic Strains , 1971 .