Development of a cortical visual neuroprosthesis for the blind: the relevance of neuroplasticity

Clinical applications such as artificial vision require extraordinary, diverse, lengthy and intimate collaborations among basic scientists, engineers and clinicians. In this review, we present the state of research on a visual neuroprosthesis designed to interface with the occipital visual cortex as a means through which a limited, but useful, visual sense could be restored in profoundly blind individuals. We review the most important physiological principles regarding this neuroprosthetic approach and emphasize the role of neural plasticity in order to achieve desired behavioral outcomes. While full restoration of fine detailed vision with current technology is unlikely in the immediate near future, the discrimination of shapes and the localization of objects should be possible allowing blind subjects to navigate in a unfamiliar environment and perhaps even to read enlarged text. Continued research and development in neuroprosthesis technology will likely result in a substantial improvement in the quality of life of blind and visually impaired individuals.

[1]  W. Penfield The Cerebral Cortex of Man , 1950 .

[2]  H. Jasper,et al.  Epilepsy and the functional anatomy of the human brain , 1985 .

[3]  G. Brindley,et al.  The sensations produced by electrical stimulation of the visual cortex , 1968, The Journal of physiology.

[4]  Brindley Gs,et al.  The extent of the region of occipital cortex that when stimulated gives phosphenes fixed in the visual field. , 1972 .

[5]  W. Almers,et al.  The decline of potassium permeability during extreme hyperpolarization in frog skeletal muscle , 1972, The Journal of physiology.

[6]  M. Mladejovsky,et al.  Artificial Vision for the Blind: Electrical Stimulation of Visual Cortex Offers Hope for a Functional Prosthesis , 1974, Science.

[7]  W. Dobelle,et al.  Phosphenes produced by electrical stimulation of human occipital cortex, and their application to the development of a prosthesis for the blind , 1974, The Journal of physiology.

[8]  M. Mladejovsky,et al.  ‘Braille’ reading by a blind volunteer by visual cortex stimulation , 1976, Nature.

[9]  D. Hubel,et al.  Ferrier lecture - Functional architecture of macaque monkey visual cortex , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[10]  Brindley Gs,et al.  Effects of electrical stimulation of the visual cortex. , 1982, Human neurobiology.

[11]  Gerald E. Loeb,et al.  Neural prosthetic interfaces with the nervous system , 1989, Trends in Neurosciences.

[12]  William Bialek,et al.  Reading a Neural Code , 1991, NIPS.

[13]  K. Horch,et al.  A silicon-based, three-dimensional neural interface: manufacturing processes for an intracortical electrode array , 1991, IEEE Transactions on Biomedical Engineering.

[14]  H Summala,et al.  Neural plasticity in processing of sound location by the early blind: an event-related potential study. , 1992, Electroencephalography and clinical neurophysiology.

[15]  D. Edell,et al.  Factors influencing the biocompatibility of insertable silicon microshafts in cerebral cortex , 1992, IEEE Transactions on Biomedical Engineering.

[16]  K. Wise,et al.  A three-dimensional microelectrode array for chronic neural recording , 1994, IEEE Transactions on Biomedical Engineering.

[17]  S. Anderson,et al.  Hallucinations following occipital lobe damage: the pathological activation of visual representations. , 1994, Journal of clinical and experimental neuropsychology.

[18]  W. H. Dobelle,et al.  Artificial vision for the blind. The summit may be closer than you think. , 1994, ASAIO journal.

[19]  J. Rauschecker Compensatory plasticity and sensory substitution in the cerebral cortex , 1995, Trends in Neurosciences.

[20]  H. Kolb,et al.  The Primary Visual Cortex -- Webvision: The Organization of the Retina and Visual System , 1995 .

[21]  Eduardo Fernández,et al.  Webvision: The Organization of the Retina and Visual System , 1995 .

[22]  C. Kufta,et al.  Feasibility of a visual prosthesis for the blind based on intracortical microstimulation of the visual cortex. , 1996, Brain : a journal of neurology.

[23]  L A Bullara,et al.  Histopathologic and Physiologic Effects of Chronic Implantation of Microelectrodes in Sacral Spinal Cord of the Cat , 1996, Journal of neuropathology and experimental neurology.

[24]  M. Hallett,et al.  Activation of the primary visual cortex by Braille reading in blind subjects , 1996, Nature.

[25]  Craig T. Nordhausen,et al.  Single unit recording capabilities of a 100 microelectrode array , 1996, Brain Research.

[26]  David J. Warren,et al.  Cortical implants for the blind , 1996 .

[27]  K. Wise,et al.  A 64-site multishank CMOS low-profile neural stimulating probe , 1996, IEEE J. Solid State Circuits.

[28]  Michael J. Berry,et al.  Adaptation of retinal processing to image contrast and spatial scale , 1997, Nature.

[29]  B. Knight,et al.  Response variability and timing precision of neuronal spike trains in vivo. , 1997, Journal of neurophysiology.

[30]  M. Hallett,et al.  Functional relevance of cross-modal plasticity in blind humans , 1997, Nature.

[31]  C. Gross From Imhotep to Hubel and Wiesel , 1997 .

[32]  G D Lewen,et al.  Reproducibility and Variability in Neural Spike Trains , 1997, Science.

[33]  R. Eckmiller Learning retina implants with epiretinal contacts. , 1997, Ophthalmic research.

[34]  F. Andermann,et al.  Complex visual hallucinations. Clinical and neurobiological insights. , 1998, Brain : a journal of neurology.

[35]  J. Mortimer,et al.  Visual sensations produced by optic nerve stimulation using an implanted self-sizing spiral cuff electrode , 1998, Brain Research.

[36]  M. Hallett,et al.  Neural networks for Braille reading by the blind. , 1998 .

[37]  S. Thanos,et al.  Implantable bioelectronic interfaces for lost nerve functions , 1998, Progress in Neurobiology.

[38]  R. Normann,et al.  Chronic recording capability of the Utah Intracortical Electrode Array in cat sensory cortex , 1998, Journal of Neuroscience Methods.

[39]  K Heimann,et al.  Successful long-term implantation of electrically inactive epiretinal microelectrode arrays in rabbits. , 1999, Retina.

[40]  K. Hashikawa,et al.  Sign language ‘heard’ in the auditory cortex , 1999, Nature.

[41]  E. Zrenner,et al.  Can subretinal microphotodiodes successfully replace degenerated photoreceptors? , 1999, Vision Research.

[42]  J. Weiland,et al.  Long-term histological and electrophysiological results of an inactive epiretinal electrode array implantation in dogs. , 1999, Investigative ophthalmology & visual science.

[43]  J. G. Duman,et al.  Cytological transformations associated with parietal cell stimulation: critical steps in the activation cascade. , 1998, Journal of cell science.

[44]  D. J. Warren,et al.  A neural interface for a cortical vision prosthesis , 1999, Vision Research.

[45]  J. Fawcett,et al.  The glial scar and central nervous system repair , 1999, Brain Research Bulletin.

[46]  X Liu,et al.  Stability of the interface between neural tissue and chronically implanted intracortical microelectrodes. , 1999, IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society.

[47]  S. Hillyard,et al.  Improved auditory spatial tuning in blind humans , 1999, Nature.

[48]  C. Koch,et al.  Encoding of visual information by LGN bursts. , 1999, Journal of neurophysiology.

[49]  T Stieglitz,et al.  Implantable microsystems. Polyimide-based neuroprostheses for interfacing nerves. , 1999, Medical device technology.

[50]  D. Szarowski,et al.  Cerebral Astrocyte Response to Micromachined Silicon Implants , 1999, Experimental Neurology.

[51]  W. H. Dobelle Artificial vision for the blind by connecting a television camera to the visual cortex. , 2000, ASAIO journal.

[52]  R. Reid,et al.  Temporal Coding of Visual Information in the Thalamus , 2000, The Journal of Neuroscience.

[53]  Van Boven RW,et al.  Tactile spatial resolution in blind braille readers(1) , 2000, American journal of ophthalmology.

[54]  R. Normann,et al.  Population coding in spike trains of simultaneously recorded retinal ganglion cells 1 1 Published on the World Wide Web on 7 November 2000. , 2000, Brain Research.

[55]  R. Guillery,et al.  Exploring the Thalamus , 2000 .

[56]  Á. Pascual-Leone,et al.  Alexia for Braille following bilateral occipital stroke in an early blind woman , 2000, NeuroReport.

[57]  J. Rauschecker,et al.  A Positron Emission Tomographic Study of Auditory Localization in the Congenitally Blind , 2000, The Journal of Neuroscience.

[58]  J. S. Lee,et al.  Deafness: Cross-modal plasticity and cochlear implants , 2001, Nature.

[59]  Eduardo Fernandez,et al.  High-resolution spatio-temporal mapping of visual pathways using multi-electrode arrays , 2001, Vision Research.

[60]  C Veraart,et al.  Electrical stimulation of anterior visual pathways in retinitis pigmentosa. , 2001, Investigative ophthalmology & visual science.

[61]  Ione Fine,et al.  Visual stimuli activate auditory cortex in the deaf , 2001, Nature Neuroscience.

[62]  E Zrenner,et al.  Retinal prosthesis: an encouraging first decade with major challenges ahead. , 2001, Ophthalmology.

[63]  M. Greschner,et al.  Population coding of motion patterns in the early visual system , 2001, Journal of Comparative Physiology A.

[64]  A. Y. Chow,et al.  Implantation of silicon chip microphotodiode arrays into the cat subretinal space , 2001, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[65]  M. Raichle,et al.  Adaptive changes in early and late blind: a fMRI study of Braille reading. , 2002, Journal of neurophysiology.

[66]  F. Rösler,et al.  Speech processing activates visual cortex in congenitally blind humans , 2002, The European journal of neuroscience.

[67]  D. Bavelier,et al.  Cross-modal plasticity: where and how? , 2002, Nature Reviews Neuroscience.

[68]  E. Zrenner Will Retinal Implants Restore Vision ? , 2002 .

[69]  Eduardo Fernández,et al.  TOWARDS A CORTICAL VISUAL NEUROPROSTHESIS FOR THE BLIND , 2002 .

[70]  M. Martinez,et al.  Mapping of the human visual cortex using image-guided transcranial magnetic stimulation. , 2002, Brain research. Brain research protocols.

[71]  Markus Bongard,et al.  Retinal ganglion cell synchronization by fixational eye movements improves feature estimation , 2002, Nature Neuroscience.

[72]  W. Rutten Selective electrical interfaces with the nervous system. , 2002, Annual review of biomedical engineering.

[73]  John P. Donoghue,et al.  Connecting cortex to machines: recent advances in brain interfaces , 2002, Nature Neuroscience.

[74]  M. Haneda,et al.  Braille alexia during visual hallucination in a blind man with selective calcarine atrophy , 2003, Psychiatry and clinical neurosciences.

[75]  F. Mussa-Ivaldi,et al.  Brain–machine interfaces: computational demands and clinical needs meet basic neuroscience , 2003, Trends in Neurosciences.

[76]  Alex R. Wade,et al.  Functional imaging of the visual pathways. , 2003, Neurologic clinics.

[77]  Benoît Gérard,et al.  Pattern recognition with the optic nerve visual prosthesis. , 2003, Artificial organs.

[78]  B. Fischer,et al.  Visual field representations and locations of visual areas V1/2/3 in human visual cortex. , 2003, Journal of vision.

[79]  Gislin Dagnelie,et al.  Visual perception in a blind subject with a chronic microelectronic retinal prosthesis , 2003, Vision Research.

[80]  Mark S Humayun,et al.  Advances in the development of visual prostheses. , 2003, Current opinion in ophthalmology.

[81]  S. Kelly,et al.  Perceptual efficacy of electrical stimulation of human retina with a microelectrode array during short-term surgical trials. , 2003, Investigative ophthalmology & visual science.

[82]  E. R Gizewski,et al.  Cross-modal plasticity for sensory and motor activation patterns in blind subjects , 2003, NeuroImage.

[83]  F. Pelayo,et al.  Brain plasticity: feasibility of a cortical visual prosthesis for the blind , 2003, Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE Cat. No.03CH37439).

[84]  Miguel A. L. Nicolelis,et al.  Brain–machine interfaces to restore motor function and probe neural circuits , 2003, Nature Reviews Neuroscience.

[85]  B. Jones,et al.  Retinal remodeling triggered by photoreceptor degenerations , 2003, The Journal of comparative neurology.

[86]  R. Malach,et al.  Early ‘visual’ cortex activation correlates with superior verbal memory performance in the blind , 2003, Nature Neuroscience.

[87]  David Bradley,et al.  A model for intracortical visual prosthesis research. , 2003, Artificial organs.

[88]  Antonio Martínez-Álvarez,et al.  Translating Image Sequences into Spike Patterns for Cortical Neuro-Stimulation , 2004, Neurocomputing.

[89]  Hugh J. McDermott Music Perception with Cochlear Implants: A Review , 2004, Trends in amplification.

[90]  E. Zohary,et al.  Transcranial magnetic stimulation of the occipital pole interferes with verbal processing in blind subjects , 2004, Nature Neuroscience.

[91]  C. Veraart,et al.  Vision rehabilitation in the case of blindness , 2004, Expert review of medical devices.

[92]  FDA-approved neurologic devices intended for use in infants, children, and adolescents , 2004, Neurology.

[93]  K. Grill-Spector,et al.  The human visual cortex. , 2004, Annual review of neuroscience.

[94]  William F. Agnew,et al.  The Effects of Prolonged Intracortical Microstimulation on the Excitability of Pyramidal Tract Neurons in the Cat , 2004, Annals of Biomedical Engineering.

[95]  Gregor Thut,et al.  Feeling by Sight or Seeing by Touch? , 2004, Neuron.

[96]  D. Cogan Visual hallucinations as release phenomena , 1973, Albrecht von Graefes Archiv für klinische und experimentelle Ophthalmologie.

[97]  Pedro Tomás,et al.  Visual neuroprosthesis: a non invasive system for stimulating the cortex , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.

[98]  L. Merabet,et al.  What blindness can tell us about seeing again: merging neuroplasticity and neuroprostheses , 2005, Nature Reviews Neuroscience.

[99]  C. Kufta,et al.  Visuotopic mapping through a multichannel stimulating implant in primate V1. , 2005, Journal of neurophysiology.

[100]  Antonio Martínez-Álvarez,et al.  A Computational Tool to Test Neuromorphic Encoding Schemes for Visual Neuroprostheses , 2005, IWANN.

[101]  L. Merabet,et al.  The plastic human brain cortex. , 2005, Annual review of neuroscience.

[102]  K. E. Jones,et al.  A glass/silicon composite intracortical electrode array , 2006, Annals of Biomedical Engineering.

[103]  J. Weiland,et al.  Intraocular retinal prosthesis , 2006, IEEE Engineering in Medicine and Biology Magazine.

[104]  G. Loeb,et al.  Visual sensations produced by intracortical microstimulation of the human occipital cortex , 1990, Medical and Biological Engineering and Computing.

[105]  B. Jones,et al.  Retinal remodeling in inherited photoreceptor degenerations , 2003, Molecular Neurobiology.