Sparse pattern selection strategies for robust Frobenius-norm minimization preconditioners in electromagnetism

We consider preconditioning strategies for the iterative solution of dense complex symmetric non-Hermitian systems arising in computational electromagnetics. We consider in particular sparse approximate inverse pre-conditioners that use static non-zero pattern selection. The novelty of our approach comes from using a different non-zero pattern selection procedure for the original matrix from that for the preconditioner and from exploiting geometric or topological information from the underlying meshes instead of using methods based on the magnitude of the entries. The numerical and computational efficiency of the proposed preconditioners are illustrated on a set of model problems arising both from academic and from industrial applications. The results of our numerical experiments suggest that the new strategies are viable approaches for the solution of large-scale electromagnetic problems using preconditioned Krylov methods. In particular, our strategies are applicable when fast multipole techniques are used for the matrix-vector product on parallel distributed memory computers. Copyright © 2000 John Wiley & Sons, Ltd.

[1]  Ke Chen,et al.  On a Class of Preconditioning Methods for Dense Linear Systems from Boundary Elements , 1998, SIAM Journal on Scientific Computing.

[2]  R. Freund,et al.  QMR: a quasi-minimal residual method for non-Hermitian linear systems , 1991 .

[3]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[4]  V. Eijkhout,et al.  Decay rates of inverses of banded M-matrices that are near to Toeplitz matrices , 1988 .

[5]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[6]  N. Gould,et al.  Sparse Approximate-Inverse Preconditioners Using Norm-Minimization Techniques , 1998, SIAM J. Sci. Comput..

[7]  M. Benson,et al.  Parallel algorithms for the solution of certain large sparse linear systems , 1984 .

[8]  C. Lanczos,et al.  Iterative Solution of Large-Scale Linear Systems , 1958 .

[9]  Jussi Rahola,et al.  Experiments On Iterative Methods And The Fast Multipole Method In Electromagnetic Scattering Calcula , 1998 .

[10]  Roland W. Freund,et al.  A Transpose-Free Quasi-Minimal Residual Algorithm for Non-Hermitian Linear Systems , 1993, SIAM J. Sci. Comput..

[11]  Louis A. Hageman,et al.  Iterative Solution of Large Linear Systems. , 1971 .

[12]  Roland W. Freund,et al.  QMRPACK: a package of QMR algorithms , 1996, TOMS.

[13]  Luc Giraud,et al.  A Set of GMRES Routines for Real and Complex Arithmetics , 1997 .

[14]  Edmond Chow,et al.  Approximate Inverse Preconditioners via Sparse-Sparse Iterations , 1998, SIAM J. Sci. Comput..

[15]  Gérard Meurant,et al.  A Review on the Inverse of Symmetric Tridiagonal and Block Tridiagonal Matrices , 1992, SIAM J. Matrix Anal. Appl..

[16]  William F. Moss,et al.  Decay rates for inverses of band matrices , 1984 .

[17]  Edmond Chow,et al.  A Priori Sparsity Patterns for Parallel Sparse Approximate Inverse Preconditioners , 1999, SIAM J. Sci. Comput..

[18]  Marcus J. Grote,et al.  Parallel Preconditioning with Sparse Approximate Inverses , 1997, SIAM J. Sci. Comput..

[19]  L. Yu. Kolotilina,et al.  Explicit preconditioning of systems of linear algebraic equations with dense matrices , 1988 .