NONPARAMETRIC IDENTIFICATION USING INSTRUMENTAL VARIABLES: SUFFICIENT CONDITIONS FOR COMPLETENESS

This paper provides sufficient conditions for the nonparametric identification of the regression function $m\left( \cdot \right)$ in a regression model with an endogenous regressor x and an instrumental variable z. It has been shown that the identification of the regression function from the conditional expectation of the dependent variable on the instrument relies on the completeness of the distribution of the endogenous regressor conditional on the instrument, i.e., $f\left( {x|z} \right)$. We show that (1) if the deviation of the conditional density $f\left( {x|{z_k}} \right)$ from a known complete sequence of functions is less than a sequence of values determined by the complete sequence in some distinct sequence $\left\{ {{z_k}:k = 1,2,3, \ldots } \right\}$ converging to ${z_0}$, then $f\left( {x|z} \right)$ itself is complete, and (2) if the conditional density $f\left( {x|z} \right)$ can form a linearly independent sequence $\{ f( \cdot |{z_k}):k = 1,2, \ldots \}$ in some distinct sequence $\left\{ {{z_k}:k = 1,2,3, \ldots } \right\}$ converging to ${z_0}$ and its relative deviation from a known complete sequence of functions under some norm is finite then $f\left( {x|z} \right)$ itself is complete. We use these general results to provide specific sufficient conditions for completeness in three different specifications of the relationship between the endogenous regressor x and the instrumental variable $z.$

[1]  Anna Simoni,et al.  SEMIPARAMETRIC ESTIMATION OF RANDOM COEFFICIENTS IN STRUCTURAL ECONOMIC MODELS , 2016, Econometric Theory.

[2]  P. Phillips,et al.  NONPARAMETRIC COINTEGRATING REGRESSION WITH ENDOGENEITY AND LONG MEMORY , 2014, Econometric Theory.

[3]  P. Phillips,et al.  Threshold Regression with Endogeneity , 2014 .

[4]  Yingyao Hu,et al.  Identification and estimation of nonlinear dynamic panel data models with unobserved covariates , 2013 .

[5]  Whitney K. Newey,et al.  Nonparametric Instrumental Variables Estimation , 2013 .

[6]  Azeem M. Shaikh,et al.  On the Testability of Identification in Some Nonparametric Models With Endogeneity , 2012 .

[7]  P. Phillips,et al.  Non�?Parametric Regression Under Location Shifts , 2011 .

[8]  D. Andrews,et al.  Examples of L2-Complete and Boundedly-Complete Distributions , 2011 .

[9]  J. Horowitz Applied Nonparametric Instrumental Variables Estimation , 2011 .

[10]  R. Cooke Real and Complex Analysis , 2011 .

[11]  Peter E. Rossi Arnold Zellner, 1927–2010 , 2011, Econometric Theory.

[12]  J. Florens,et al.  Nonparametric Instrumental Regression , 2010 .

[13]  Xavier D'Haultfoeuille,et al.  ON THE COMPLETENESS CONDITION IN NONPARAMETRIC INSTRUMENTAL PROBLEMS , 2010, Econometric Theory.

[14]  Yingyao Hu,et al.  Identification and estimation of nonlinear models using two samples with nonclassical measurement errors , 2010, Journal of nonparametric statistics.

[15]  Yingyao Hu,et al.  Well-posedness of measurement error models for self-reported data , 2009 .

[16]  Qiying Wang,et al.  Structural Nonparametric Cointegrating Regression , 2008 .

[17]  Victor Chernozhukov,et al.  Instrumental variable estimation of nonseparable models , 2007 .

[18]  Qiying Wang,et al.  ASYMPTOTIC THEORY FOR LOCAL TIME DENSITY ESTIMATION AND NONPARAMETRIC COINTEGRATING REGRESSION , 2006, Econometric Theory.

[19]  Xiaohong Chen,et al.  Identification and Inference of Nonlinear Models Using Two Samples with Aribrary Measurement Errors , 2006 .

[20]  Joel L. Horowitz,et al.  Nonparametric Instrumental Variables Estimation of a Quantile Regression Model , 2006 .

[21]  Xiaohong Chen,et al.  Efficient Estimation of Models with Conditional Moment Restrictions Containing Unknown Functions , 2003 .

[22]  Xiaohong Chen,et al.  Semi‐Nonparametric IV Estimation of Shape‐Invariant Engel Curves , 2003 .

[23]  W. Newey,et al.  Instrumental variable estimation of nonparametric models , 2003 .

[24]  P. Hall,et al.  Nonparametric methods for inference in the presence of instrumental variables , 2003, math/0603130.

[25]  M. Dostanic On the Completeness of the System of Functions , 1996 .

[26]  L. Mattner Complete order statistics in parametric models , 1996 .

[27]  L. Mattner,et al.  Some incomplete but boundedly complete location families , 1993 .

[28]  M. Dostanic On the completeness of the system of function {e−αλnx sin λnx}n = 1∞ , 1990 .

[29]  Jean-Pierre Florens,et al.  Elements of Bayesian Statistics , 1990 .

[30]  A. Mirolyubov On the completeness of a system of functions , 1968 .

[31]  Paul Erdös,et al.  On linear independence of sequences in a Banach space. , 1953 .

[32]  Diana Bohm,et al.  Essential Results Of Functional Analysis , 2016 .

[33]  Preliminary draft: Comments welcome , 2008 .

[34]  Susanne M. Schennach,et al.  Instrumental Variable Treatment of Nonclassical Measurement Error Models , 2008 .

[35]  M. Mouchart,et al.  On joint completeness: sampling and Bayesian versions, and their connections , 2007 .

[36]  Gerald Teschl,et al.  Functional Analysis , 2023, Texts and Readings in Mathematics.

[37]  V. Chernozhukov,et al.  An IV Model of Quantile Treatment Effects , 2002 .

[38]  W. Newey,et al.  16 Efficient estimation of models with conditional moment restrictions , 1993 .

[39]  R. Young,et al.  An introduction to nonharmonic Fourier series , 1980 .