Effect of TiO2 film porosity and thermal processing on TiO2–P3HT hybrid materials and photovoltaic device performance

[1]  R. Thomann,et al.  Semicrystalline morphology in thin films of poly(3-hexylthiophene) , 2004 .

[2]  M. Leclerc,et al.  Electrical and optical properties of Processable Polythiophene Derivatives: Structure‐Property relationships , 1997 .

[3]  M. J. Brett,et al.  Porosity engineering in glancing angle deposition thin films , 2005 .

[4]  Philippe Belleville,et al.  Nanostructured Hybrid Solar Cells Based on Self-Assembled Mesoporous Titania Thin Films , 2006 .

[5]  Michael D. McGehee,et al.  Nanostructured Organic—Inorganic Hybrid Solar Cells , 2009 .

[6]  E. F. Schubert,et al.  Quantification of porosity and deposition rate of nanoporous films grown by oblique-angle deposition , 2008 .

[7]  N. T. Harrison,et al.  Electronic Processes of Conjugated Polymers in Semiconductor Device Structures , 1997 .

[8]  Donal D. C. Bradley,et al.  Hybrid polymer/metal oxide solar cells based on ZnO columnar structures , 2006 .

[9]  M. J. Brett,et al.  Sculptured thin films and glancing angle deposition: Growth mechanics and applications , 1997 .

[10]  J. Fréchet,et al.  Polymer-fullerene composite solar cells. , 2008, Angewandte Chemie.

[11]  T. Yoon,et al.  Hybrid inverted bulk heterojunction solar cells with nanoimprinted TiO2 nanopores , 2009 .

[12]  Michael J. Brett,et al.  Morphology of periodic nanostructures for photonic crystals grown by glancing angle deposition , 2006 .

[13]  C. Tang Two‐layer organic photovoltaic cell , 1986 .

[14]  E. W. Meijer,et al.  Two-dimensional charge transport in self-organized, high-mobility conjugated polymers , 1999, Nature.

[15]  O. Inganäs,et al.  Structural anisotropy of poly(alkylthiophene) films , 2000 .

[16]  Michael D. McGehee,et al.  Photovoltaic cells made from conjugated polymers infiltrated into mesoporous titania , 2003 .

[17]  Josef Salbeck,et al.  Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies , 1998, Nature.

[18]  S. Forrest,et al.  Exciton diffusion lengths of organic semiconductor thin films measured by spectrally resolved photoluminescence quenching , 2009 .

[19]  David Braun,et al.  Semiconducting polymer‐buckminsterfullerene heterojunctions: Diodes, photodiodes, and photovoltaic cells , 1993 .

[20]  B. M. Henry,et al.  Study of the effect of changing the microstructure of titania layers on composite solar cell performance , 2006 .

[21]  W. Su,et al.  Improved charge separation and transport efficiency in poly(3-hexylthiophene)-TiO2 nanorod bulk heterojunction solar cells , 2008 .

[22]  M. McGehee,et al.  Nanostructuring titania by embossing with polymer molds made from anodic alumina templates. , 2005, Nano letters.

[23]  Jan C Hummelen,et al.  Accurate measurement of the exciton diffusion length in a conjugated polymer using a heterostructure with a side-chain cross-linked fullerene layer. , 2005, The journal of physical chemistry. A.

[24]  Yuji Wada,et al.  Solid State Dye-Sensitized TiO2 Solar Cell with Polypyrrole as Hole Transport Layer , 1997 .

[25]  P. C. Chui,et al.  Influence of solvent on film morphology and device performance of poly(3-hexylthiophene):TiO2 nanocomposite solar cells , 2004 .

[26]  Sue A. Carter,et al.  Charge transfer in photovoltaics consisting of interpenetrating networks of conjugated polymer and TiO2 nanoparticles , 1999 .

[27]  Michael J. Brett,et al.  Dye sensitized solar cells incorporating obliquely deposited titanium oxide layers , 2005 .

[28]  Michael J. Brett,et al.  Glancing angle deposition: Fabrication, properties, and applications of micro- and nanostructured thin films , 2007 .

[29]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[30]  C. Grimes,et al.  High efficiency double heterojunction polymer photovoltaic cells using highly ordered TiO2 nanotube arrays , 2007 .

[31]  Ralf Fink,et al.  Novel hybrid solar cells consisting of inorganic nanoparticles and an organic hole transport material , 1997 .

[32]  K. Yoshino,et al.  Effects of Heat treatment on Properties of Poly(3-alkylthiophene) , 1994 .

[33]  Chia-Hao Chang,et al.  Interfacial nanostructuring on the performance of polymer/TiO2 nanorod bulk heterojunction solar cells. , 2009, Journal of the American Chemical Society.

[34]  Arun Majumdar,et al.  Design of Nanostructured Heterojunction Polymer Photovoltaic Devices , 2003 .

[35]  Jonathan M. Ziebarth,et al.  Enhanced Hole Mobility in Regioregular Polythiophene Infiltrated in Straight Nanopores , 2005 .

[36]  P. Searson,et al.  A Solid State, Dye Sensitized Photoelectrochemical Cell , 1995 .

[37]  James R. Durrant,et al.  Dye-Sensitized Nanocrystalline Solar Cells Employing a Polymer Electrolyte , 2001 .

[38]  Craig A Grimes,et al.  Self-assembled hybrid polymer-TiO2 nanotube array heterojunction solar cells. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[39]  Yunzhi Liu,et al.  Infiltrating Semiconducting Polymers into Self‐Assembled Mesoporous Titania Films for Photovoltaic Applications , 2003 .

[40]  N. S. Sariciftci,et al.  Conjugated polymer-based organic solar cells. , 2007, Chemical reviews.

[41]  Nicholas G. Wakefield,et al.  Surface area characterization of obliquely deposited metal oxide nanostructured thin films. , 2010, Langmuir.

[42]  Michael D. McGehee,et al.  Conjugated Polymer Photovoltaic Cells , 2004 .

[43]  P. C. Chui,et al.  Titania bicontinuous network structures for solar cell applications , 2005 .