Elongation factor Tu is a multifunctional and processed moonlighting protein

[1]  R. Dumke,et al.  Interactions of surface-displayed glycolytic enzymes of Mycoplasma pneumoniae with components of the human extracellular matrix. , 2016, International journal of medical microbiology : IJMM.

[2]  N. Navarro-Alvarez,et al.  Elongation Factor Tu and Heat Shock Protein 70 Are Membrane-Associated Proteins from Mycoplasma ovipneumoniae Capable of Inducing Strong Immune Response in Mice , 2016, PloS one.

[3]  A. Guillot,et al.  Mass Spectrometry Analysis of the Extracellular Peptidome of Lactococcus lactis: Lines of Evidence for the Coexistence of Extracellular Protein Hydrolysis and Intracellular Peptide Excretion. , 2016, Journal of proteome research.

[4]  Ben M. Webb,et al.  Comparative Protein Structure Modeling Using MODELLER , 2016, Current protocols in bioinformatics.

[5]  Li Yang,et al.  Factors influencing the nuclear targeting ability of nuclear localization signals , 2016, Journal of drug targeting.

[6]  C. Jeffery,et al.  An analysis of surface proteomics results reveals novel candidates for intracellular/surface moonlighting proteins in bacteria. , 2016, Molecular bioSystems.

[7]  Nicola K. Petty,et al.  Explosive cell lysis as a mechanism for the biogenesis of bacterial membrane vesicles and biofilms , 2016, Nature Communications.

[8]  Y. Ou,et al.  Fragmentation of CagA Reduces Hummingbird Phenotype Induction by Helicobactor pylori , 2016, PloS one.

[9]  S. Djordjevic,et al.  Post-translational processing targets functionally diverse proteins in Mycoplasma hyopneumoniae , 2016, Open Biology.

[10]  M. Solomon,et al.  Extracellular DNA facilitates the formation of functional amyloids in Staphylococcus aureus biofilms , 2016, Molecular microbiology.

[11]  Melanie Pfeiffer,et al.  Network of Surface-Displayed Glycolytic Enzymes in Mycoplasma pneumoniae and Their Interactions with Human Plasminogen , 2015, Infection and Immunity.

[12]  V. Liebscher,et al.  Microarray‐based identification of human antibodies against Staphylococcus aureus antigens , 2015, Proteomics. Clinical applications.

[13]  S. Djordjevic,et al.  P40 and P90 from Mpn142 are Targets of Multiple Processing Events on the Surface of Mycoplasma pneumoniae , 2015, Proteomes.

[14]  Alan M. Moses,et al.  Short linear motifs – ex nihilo evolution of protein regulation , 2015, Cell Communication and Signaling.

[15]  Alan M. Moses,et al.  Short linear motifs – ex nihilo evolution of protein regulation , 2015, Cell Communication and Signaling.

[16]  T. Gibson,et al.  Experimental detection of short regulatory motifs in eukaryotic proteins: tips for good practice as well as for bad , 2015, Cell Communication and Signaling.

[17]  Chengping Lu,et al.  Identification of Novel Laminin- and Fibronectin-binding Proteins by Far-Western Blot: Capturing the Adhesins of Streptococcus suis Type 2 , 2015, Front. Cell. Infect. Microbiol..

[18]  R. Losick,et al.  An Electrostatic Net Model for the Role of Extracellular DNA in Biofilm Formation by Staphylococcus aureus , 2015, Journal of bacteriology.

[19]  M. Prax,et al.  Excretion of cytoplasmic proteins (ECP) inStaphylococcus aureus: Excretion of cytoplasmic proteins , 2015 .

[20]  M. Prax,et al.  Excretion of cytoplasmic proteins (ECP) in Staphylococcus aureus. , 2015 .

[21]  G. Igrejas,et al.  Surfaceome and exoproteome of a clinical sequence type 398 methicillin resistant Staphylococcus aureus strain , 2015, Biochemistry and biophysics reports.

[22]  Wenxian Sun,et al.  Enhancement of innate immune system in monocot rice by transferring the dicotyledonous elongation factor Tu receptor EFR. , 2015, Journal of integrative plant biology.

[23]  Ryo Takano,et al.  Heparin interacts with elongation factor 1α of Cryptosporidium parvum and inhibits invasion , 2015, Scientific Reports.

[24]  S. Goldenberg,et al.  Eukaryotic translation elongation factor-1 alpha is associated with a specific subset of mRNAs in Trypanosoma cruzi , 2015, BMC Microbiology.

[25]  S. Goldenberg,et al.  Eukaryotic translation elongation factor-1 alpha is associated with a specific subset of mRNAs in Trypanosoma cruzi , 2015, BMC Microbiology.

[26]  Melanie Pfeiffer,et al.  Subunits of the Pyruvate Dehydrogenase Cluster of Mycoplasma pneumoniae Are Surface-Displayed Proteins that Bind and Activate Human Plasminogen , 2015, PloS one.

[27]  Amit Kumar,et al.  The eEF1A Proteins: At the Crossroads of Oncogenesis, Apoptosis, and Viral Infections , 2015, Front. Oncol..

[28]  A. van Belkum,et al.  Comparative Exoproteomics and Host Inflammatory Response in Staphylococcus aureus Skin and Soft Tissue Infections, Bacteremia, and Subclinical Colonization , 2015, Clinical and Vaccine Immunology.

[29]  C. Whitchurch,et al.  Proteolytic processing of the cilium adhesin MHJ_0194 (P123J) in Mycoplasma hyopneumoniae generates a functionally diverse array of cleavage fragments that bind multiple host molecules , 2015, Cellular microbiology.

[30]  R. Nicholas,et al.  Immunoproteomic characterisation of Mycoplasma mycoides subspecies capri by mass spectrometry analysis of two‐dimensional electrophoresis spots and western blot , 2015, The Journal of pharmacy and pharmacology.

[31]  M. Prax,et al.  Excretion of cytosolic proteins (ECP) in bacteria. , 2015, International journal of medical microbiology : IJMM.

[32]  S. Djordjevic,et al.  MHJ_0461 is a multifunctional leucine aminopeptidase on the surface of Mycoplasma hyopneumoniae , 2015, Open Biology.

[33]  T. Foster,et al.  Protein-based biofilm matrices in Staphylococci , 2014, Front. Cell. Infect. Microbiol..

[34]  A. Horswill,et al.  Staphylococcus aureus biofilms: recent developments in biofilm dispersal , 2014, Front. Cell. Infect. Microbiol..

[35]  P. Zipfel,et al.  Tuf of Streptococcus pneumoniae is a surface displayed human complement regulator binding protein. , 2014, Molecular immunology.

[36]  R. Losick,et al.  The Extracellular Matrix of Staphylococcus aureus Biofilms Comprises Cytoplasmic Proteins That Associate with the Cell Surface in Response to Decreasing pH , 2014, mBio.

[37]  E. Malchiodi,et al.  Description of a Novel Adhesin of Mycobacterium avium Subsp. paratuberculosis , 2014, BioMed research international.

[38]  S. Djordjevic,et al.  Cilium adhesin P216 (MHJ_0493) is a target of ectodomain shedding and aminopeptidase activity on the surface of Mycoplasma hyopneumoniae. , 2014, Journal of proteome research.

[39]  Avner Schlessinger,et al.  PredictProtein—an open resource for online prediction of protein structural and functional features , 2014, Nucleic Acids Res..

[40]  H. Hirai,et al.  Two distinct EF-Tu epitopes induce immune responses in rice and Arabidopsis. , 2014, Molecular plant-microbe interactions : MPMI.

[41]  A. Charbit,et al.  Detection of the interaction between host and bacterial proteins: eukaryotic nucleolin interacts with Francisella elongation factor Tu. , 2014, Methods in molecular biology.

[42]  Wei Chen,et al.  The Roles of Moonlighting Proteins in Bacteria. , 2014, Current issues in molecular biology.

[43]  Yuji Yamamoto,et al.  Identification and Characterization of Sulfated Carbohydrate-Binding Protein from Lactobacillus reuteri , 2013, PloS one.

[44]  S. Djordjevic,et al.  P159 from Mycoplasma hyopneumoniae binds porcine cilia and heparin and is cleaved in a manner akin to ectodomain shedding. , 2013, Journal of proteome research.

[45]  A. Barbosa,et al.  Interaction of Leptospira Elongation Factor Tu with Plasminogen and Complement Factor H: A Metabolic Leptospiral Protein with Moonlighting Activities , 2013, PloS one.

[46]  Trairak Pisitkun,et al.  PhosSA: Fast and accurate phosphorylation site assignment algorithm for mass spectrometry data , 2013, Proteome Science.

[47]  M. Heller,et al.  The Aeromonas salmonicida subsp. salmonicida exoproteome: global analysis, moonlighting proteins and putative antigens for vaccination against furunculosis , 2013, Proteome Science.

[48]  H. Lillehoj,et al.  Elongation Factor-1α Is a Novel Protein Associated with Host Cell Invasion and a Potential Protective Antigen of Cryptosporidium parvum * , 2013, The Journal of Biological Chemistry.

[49]  Mitchell F. Balish,et al.  Type 1 and type 2 strains of Mycoplasma pneumoniae form different biofilms. , 2013, Microbiology.

[50]  C. Whitchurch,et al.  MHJ_0125 is an M42 glutamyl aminopeptidase that moonlights as a multifunctional adhesin on the surface of Mycoplasma hyopneumoniae , 2013, Open Biology.

[51]  R. Dumke,et al.  Characterization of pyruvate dehydrogenase subunit B and enolase as plasminogen-binding proteins in Mycoplasma pneumoniae. , 2013, Microbiology.

[52]  G. Zhong,et al.  Chlamydia trachomatis Outer Membrane Complex Protein B (OmcB) Is Processed by the Protease CPAF , 2012, Journal of bacteriology.

[53]  Youhe Gao,et al.  Unrestrictive identification of post-translational modifications in the urine proteome without enrichment , 2013, Proteome Science.

[54]  G. Tyrrell,et al.  Identification of the Actin and Plasminogen Binding Regions of Group B Streptococcal Phosphoglycerate Kinase* , 2012, The Journal of Biological Chemistry.

[55]  T. Kinzy,et al.  The many roles of the eukaryotic elongation factor 1 complex , 2012, Wiley interdisciplinary reviews. RNA.

[56]  W. Haskins,et al.  Association of Acinetobacter baumannii EF-Tu with Cell Surface, Outer Membrane Vesicles, and Fibronectin , 2012, TheScientificWorldJournal.

[57]  N. Dixon,et al.  Characterization of Cleavage Events in the Multifunctional Cilium Adhesin Mhp684 (P146) Reveals a Mechanism by Which Mycoplasma hyopneumoniae Regulates Surface Topography , 2012, mBio.

[58]  G. Tyrrell,et al.  Identification of genes affecting expression of phosphoglycerate kinase on the surface of group B streptococcus. , 2012, Canadian journal of microbiology.

[59]  B. Crossett,et al.  Mycoplasma hyopneumoniae Surface proteins Mhp385 and Mhp384 bind host cilia and glycosaminoglycans and are endoproteolytically processed by proteases that recognize different cleavage motifs. , 2012, Journal of proteome research.

[60]  N. Dixon,et al.  Mhp182 (P102) binds fibronectin and contributes to the recruitment of plasmin(ogen) to the Mycoplasma hyopneumoniae cell surface , 2012, Cellular microbiology.

[61]  Norman E. Davey,et al.  Attributes of short linear motifs. , 2012, Molecular bioSystems.

[62]  Janusz M. Bujnicki,et al.  MetaDisorder: a meta-server for the prediction of intrinsic disorder in proteins , 2012, BMC Bioinformatics.

[63]  D. Higgins,et al.  Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega , 2011, Molecular systems biology.

[64]  Nichollas E. Scott,et al.  Sequence TTKF↓QE Defines the Site of Proteolytic Cleavage in Mhp683 Protein, a Novel Glycosaminoglycan and Cilium Adhesin of Mycoplasma hyopneumoniae* , 2011, The Journal of Biological Chemistry.

[65]  S. Brunak,et al.  SignalP 4.0: discriminating signal peptides from transmembrane regions , 2011, Nature Methods.

[66]  S. Rottem,et al.  Adhesion and biofilm formation of Mycoplasma pneumoniae on an abiotic surface , 2011, Archives of Microbiology.

[67]  Brian Henderson,et al.  Bacterial Virulence in the Moonlight: Multitasking Bacterial Moonlighting Proteins Are Virulence Determinants in Infectious Disease , 2011, Infection and Immunity.

[68]  M. Hecker,et al.  Quantitative proteomic view on secreted, cell surface-associated, and cytoplasmic proteins of the methicillin-resistant human pathogen Staphylococcus aureus under iron-limited conditions. , 2011, Journal of proteome research.

[69]  V. Monedero,et al.  Identification of Surface Proteins from Lactobacillus casei BL23 Able to Bind Fibronectin and Collagen , 2011, Probiotics and antimicrobial proteins.

[70]  N. Dixon,et al.  Mhp107 Is a Member of the Multifunctional Adhesin Family of Mycoplasma hyopneumoniae* , 2011, The Journal of Biological Chemistry.

[71]  L. Morici,et al.  Immunospecific Responses to Bacterial Elongation Factor Tu during Burkholderia Infection and Immunization , 2010, PloS one.

[72]  N. Dixon,et al.  Repeat regions R1 and R2 in the P97 paralogue Mhp271 of Mycoplasma hyopneumoniae bind heparin, fibronectin and porcine cilia , 2010, Molecular microbiology.

[73]  A. Nordheim,et al.  Staphylococcal Major Autolysin (Atl) Is Involved in Excretion of Cytoplasmic Proteins* , 2010, The Journal of Biological Chemistry.

[74]  N. Dixon,et al.  A Processed Multidomain Mycoplasma hyopneumoniae Adhesin Binds Fibronectin, Plasminogen, and Swine Respiratory Cilia , 2010, The Journal of Biological Chemistry.

[75]  M. Hecker,et al.  Profiling the surfacome of Staphylococcus aureus , 2010, Proteomics.

[76]  Mary Ann Robinson,et al.  Identification of a Novel Staphylococcus aureus Two-Component Leukotoxin Using Cell Surface Proteomics , 2010, PloS one.

[77]  S. Djordjevic,et al.  Identification of Lipoprotein MslA as a Neoteric Virulence Factor of Mycoplasma gallisepticum , 2010, Infection and Immunity.

[78]  Tal Pupko,et al.  ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids , 2010, Nucleic Acids Res..

[79]  T. Kinzy,et al.  eEF1A: Thinking Outside the Ribosome* , 2010, The Journal of Biological Chemistry.

[80]  M. Larsen,et al.  Improved accuracy of cell surface shaving proteomics in Staphylococcus aureus using a false‐positive control , 2010, Proteomics.

[81]  M. Hecker,et al.  Quantitative cell surface proteome profiling for SigB-dependent protein expression in the human pathogen Staphylococcus aureus via biotinylation approach. , 2010, Journal of proteome research.

[82]  Fred P. Davis,et al.  The Overlap of Small Molecule and Protein Binding Sites within Families of Protein Structures , 2010, PLoS Comput. Biol..

[83]  Nichollas E. Scott,et al.  Mass spectrometric characterization of the Campylobacter jejuni adherence factor CadF reveals post‐translational processing that removes immunogenicity while retaining fibronectin binding , 2010, Proteomics.

[84]  P. Hart,et al.  Amino Acid Changes in Elongation Factor Tu of Mycoplasma pneumoniae and Mycoplasma genitalium Influence Fibronectin Binding , 2009, Infection and Immunity.

[85]  Ethan E. Mann,et al.  Modulation of eDNA Release and Degradation Affects Staphylococcus aureus Biofilm Maturation , 2009, PloS one.

[86]  T. Boller,et al.  A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. , 2009, Annual review of plant biology.

[87]  M. Krönke,et al.  Proteomics-Based Identification of Anchorless Cell Wall Proteins as Vaccine Candidates against Staphylococcus aureus , 2009, Infection and Immunity.

[88]  Avner Schlessinger,et al.  Improved Disorder Prediction by Combination of Orthogonal Approaches , 2009, PloS one.

[89]  S. Cordwell,et al.  Mhp493 (P216) is a proteolytically processed, cilium and heparin binding protein of Mycoplasma hyopneumoniae , 2009, Molecular microbiology.

[90]  H. Dyson,et al.  Linking folding and binding. , 2009, Current opinion in structural biology.

[91]  M. Otto Staphylococcal biofilms. , 2008, Current topics in microbiology and immunology.

[92]  A. Charbit,et al.  A novel receptor – ligand pathway for entry of Francisella tularensis in monocyte-like THP-1 cells: interaction between surface nucleolin and bacterial elongation factor Tu , 2008, BMC Microbiology.

[93]  Takashi Shimizu,et al.  A Triacylated Lipoprotein from Mycoplasma genitalium Activates NF-κB through Toll-Like Receptor 1 (TLR1) and TLR2 , 2008, Infection and Immunity.

[94]  J. Baseman,et al.  The Surface-Exposed Carboxyl Region of Mycoplasma pneumoniae Elongation Factor Tu Interacts with Fibronectin , 2008, Infection and Immunity.

[95]  G. Stacey,et al.  A LysM Receptor-Like Kinase Plays a Critical Role in Chitin Signaling and Fungal Resistance in Arabidopsis[W][OA] , 2008, The Plant Cell Online.

[96]  Y. Narusaka,et al.  CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis , 2007, Proceedings of the National Academy of Sciences.

[97]  Jeffrey B. Kaplan,et al.  Differential Roles of Poly-N-Acetylglucosamine Surface Polysaccharide and Extracellular DNA in Staphylococcus aureus and Staphylococcus epidermidis Biofilms , 2007, Applied and Environmental Microbiology.

[98]  Ben M. Webb,et al.  Comparative Protein Structure Modeling Using MODELLER , 2007, Current protocols in protein science.

[99]  Mahavir Singh,et al.  Identification of novel bacterial plasminogen‐binding proteins in the human pathogen Mycobacterium tuberculosis , 2007, Proteomics.

[100]  P. Zipfel,et al.  Immune Evasion of the Human Pathogen Pseudomonas aeruginosa: Elongation Factor Tuf Is a Factor H and Plasminogen Binding Protein , 2007, The Journal of Immunology.

[101]  S. Djordjevic,et al.  The Mycoplasma gallisepticum OsmC-like protein MG1142 resides on the cell surface and binds heparin. , 2007, Microbiology.

[102]  A. Zaha,et al.  Proteomic survey of the pathogenic Mycoplasma hyopneumoniae strain 7448 and identification of novel post-translationally modified and antigenic proteins. , 2007, Veterinary microbiology.

[103]  Burkhard Rost,et al.  ISIS: interaction sites identified from sequence , 2007, Bioinform..

[104]  Amos Bairoch,et al.  ScanProsite: detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins , 2006, Nucleic Acids Res..

[105]  T. Boller,et al.  Perception of the Bacterial PAMP EF-Tu by the Receptor EFR Restricts Agrobacterium-Mediated Transformation , 2006, Cell.

[106]  C. Uphoff,et al.  P159 is a proteolytically processed, surface adhesin of Mycoplasma hyopneumoniae: defined domains of P159 bind heparin and promote adherence to eukaryote cells , 2006, Molecular microbiology.

[107]  J. Klena,et al.  Identification of a fibronectin‐binding domain within the Campylobacter jejuni CadF protein , 2005, Molecular microbiology.

[108]  G. O’Toole,et al.  Heparin Stimulates Staphylococcus aureus Biofilm Formation , 2005, Infection and Immunity.

[109]  R. Frade,et al.  Infection of human B lymphoma cells by Mycoplasma fermentans induces interaction of its elongation factor with the intracytoplasmic domain of Epstein-Barr virus receptor (gp140, EBV/C3dR, CR2, CD21). , 2005, FEMS microbiology letters.

[110]  K. Niehaus,et al.  The N Terminus of Bacterial Elongation Factor Tu Elicits Innate Immunity in Arabidopsis Plants , 2004, The Plant Cell Online.

[111]  J. Wehland,et al.  The cell wall subproteome of Listeria monocytogenes , 2004, Proteomics.

[112]  S. Cordwell,et al.  Proteolytic Processing of the Mycoplasma hyopneumoniae Cilium Adhesin , 2004, Infection and Immunity.

[113]  M. Marra,et al.  The translation elongation factor 1A in tumorigenesis, signal transduction and apoptosis: Review article , 2004, Amino Acids.

[114]  L. Piater,et al.  Innate immunity in plants and animals: striking similarities and obvious differences , 2004, Immunological reviews.

[115]  G. Bergonzelli,et al.  Cell Surface-Associated Elongation Factor Tu Mediates the Attachment of Lactobacillus johnsonii NCC533 (La1) to Human Intestinal Cells and Mucins , 2004, Infection and Immunity.

[116]  N. Blom,et al.  Feature-based prediction of non-classical and leaderless protein secretion. , 2004, Protein engineering, design & selection : PEDS.

[117]  David A Jones,et al.  Plant innate immunity - direct and indirect recognition of general and specific pathogen-associated molecules. , 2004, Current opinion in immunology.

[118]  Jonathan M. Lee,et al.  Not just for housekeeping: protein initiation and elongation factors in cell growth and tumorigenesis , 2003, Journal of Molecular Medicine.

[119]  N. Gow,et al.  Candida albicans binds human plasminogen: identification of eight plasminogen‐binding proteins , 2003, Molecular microbiology.

[120]  G. S. Chhatwal,et al.  Housekeeping enzymes as virulence factors for pathogens. , 2003, International journal of medical microbiology : IJMM.

[121]  Burkhard Rost,et al.  The PredictProtein server , 2003, Nucleic Acids Res..

[122]  N. Reiner,et al.  Leishmania EF-1α Activates the Src Homology 2 Domain Containing Tyrosine Phosphatase SHP-1 Leading to Macrophage Deactivation* , 2002, The Journal of Biological Chemistry.

[123]  J. Baseman,et al.  Elongation factor Tu and E1 β subunit of pyruvate dehydrogenase complex act as fibronectin binding proteins in Mycoplasma pneumoniae , 2002, Molecular microbiology.

[124]  M. Miyamoto,et al.  The crystal structure of eEF1A refines the functional predictions of an evolutionary analysis of rate changes among elongation factors. , 2002, Molecular biology and evolution.

[125]  K. Wise,et al.  Site-Specific Proteolysis of the MALP-404 Lipoprotein Determines the Release of a Soluble Selective Lipoprotein-Associated Motif-Containing Fragment and Alteration of the Surface Phenotype of Mycoplasma fermentans , 2002, Infection and Immunity.

[126]  S. Ejiri Moonlighting Functions of Polypeptide Elongation Factor 1: From Actin Bundling to Zinc Finger Protein R1-Associated Nuclear Localization , 2002, Bioscience, biotechnology, and biochemistry.

[127]  J. Nyborg,et al.  Crystal structures of nucleotide exchange intermediates in the eEF1A–eEF1Bα complex , 2001, Nature Structural Biology.

[128]  A. Ljungh,et al.  Isolation and characterisation of a 17-kDa staphylococcal heparin-binding protein with broad specificity. , 2001, Journal of medical microbiology.

[129]  Clement BordierO Phase Separation of Integral Membrane Proteins in Triton X-114 Solution , 2001 .

[130]  T. Boller,et al.  FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. , 2000, Molecular cell.

[131]  M. Mann,et al.  Proteins complexed to the P1 adhesin of Mycoplasma pneumoniae. , 2000, Microbiology.

[132]  D. N. Perkins,et al.  Probability‐based protein identification by searching sequence databases using mass spectrometry data , 1999, Electrophoresis.

[133]  J. Blein,et al.  Are elicitins cryptograms in plant-Oomycete communications? , 1999, Cellular and Molecular Life Sciences CMLS.

[134]  J. V. van Putten,et al.  Sulfated Polysaccharide-Directed Recruitment of Mammalian Host Proteins: a Novel Strategy in Microbial Pathogenesis , 1999, Infection and Immunity.

[135]  R. Raggiaschi,et al.  Identification of immunoreactive proteins of Chlamydia trachomatis by Western blot analysis of a two‐dimensional electrophoresis map with patient sera , 1999, Electrophoresis.

[136]  K. Wise,et al.  Differential Posttranslational Processing Confers Intraspecies Variation of a Major Surface Lipoprotein and a Macrophage-Activating Lipopeptide of Mycoplasma fermentans , 1999, Infection and Immunity.

[137]  R D Appel,et al.  Protein identification and analysis tools in the ExPASy server. , 1999, Methods in molecular biology.

[138]  G. Jung,et al.  Isolation, Structure Elucidation, and Synthesis of a Macrophage Stimulatory Lipopeptide from Mycoplasma fermentans Acting at Picomolar Concentration , 1997, The Journal of experimental medicine.

[139]  S. Djordjevic,et al.  Identification of novel species-specific antigens of Mycoplasma hyopneumoniae by preparative SDS-PAGE ELISA profiling. , 1997, Microbiology.

[140]  S Thirup,et al.  Helix unwinding in the effector region of elongation factor EF-Tu-GDP. , 1996, Structure.

[141]  J D Palmer,et al.  The root of the universal tree and the origin of eukaryotes based on elongation factor phylogeny. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[142]  M. Sprinzl,et al.  Elongation factor Tu: a regulatory GTPase with an integrated effector. , 1994, Trends in biochemical sciences.

[143]  J. Nyborg,et al.  The crystal structure of elongation factor EF-Tu from Thermus aquaticus in the GTP conformation. , 1993, Structure.

[144]  Kay Hofmann,et al.  Tmbase-A database of membrane spanning protein segments , 1993 .

[145]  F. Ascencio,et al.  Binding of heparan sulfate to Staphylococcus aureus , 1992, Infection and immunity.

[146]  J. Nyborg,et al.  Refined structure of elongation factor EF-Tu from Escherichia coli. , 1992, Journal of molecular biology.

[147]  A. Lupas,et al.  Predicting coiled coils from protein sequences , 1991, Science.

[148]  R. Laskey,et al.  Two interdependent basic domains in nucleoplasmin nuclear targeting sequence: Identification of a class of bipartite nuclear targeting sequence , 1991, Cell.

[149]  H. Joo,et al.  Evaluation of the ELISA and comparison to the complement fixation test and radial immunodiffusion enzyme assay for detection of antibodies against Mycoplasma hyopneumoniae in swine serum. , 1990, Veterinary microbiology.

[150]  B. Clark,et al.  Structural determination of the functional sites of E. coli elongation factor Tu. , 1990, Biochimica et biophysica acta.

[151]  A. Cardin,et al.  Molecular Modeling of Protein‐Glycosaminoglycan Interactions , 1989, Arteriosclerosis.

[152]  P. Albersheim,et al.  The primary structures of one elicitor-active and seven elicitor-inactive hexa(beta-D-glucopyranosyl)-D-glucitols isolated from the mycelial walls of Phytophthora megasperma f. sp. glycinea. , 1984, The Journal of biological chemistry.

[153]  A. Furano Content of elongation factor Tu in Escherichia coli. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[154]  L. Hayflick Tissue cultures and mycoplasmas. , 1965, Texas reports on biology and medicine.