Self-Paced Learning for Long-Term Tracking

We address the problem of long-term object tracking, where the object may become occluded or leave-the-view. In this setting, we show that an accurate appearance model is considerably more effective than a strong motion model. We develop simple but effective algorithms that alternate between tracking and learning a good appearance model given a track. We show that it is crucial to learn from the "right" frames, and use the formalism of self-paced curriculum learning to automatically select such frames. We leverage techniques from object detection for learning accurate appearance-based templates, demonstrating the importance of using a large negative training set (typically not used for tracking). We describe both an offline algorithm (that processes frames in batch) and a linear-time on-line (i.e. causal) algorithm that approaches real-time performance. Our models significantly outperform prior art, reducing the average error on benchmark videos by a factor of 4.

[1]  James J. Little,et al.  A Boosted Particle Filter: Multitarget Detection and Tracking , 2004, ECCV.

[2]  Daphne Koller,et al.  Self-Paced Learning for Latent Variable Models , 2010, NIPS.

[3]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[4]  Horst Bischof,et al.  PROST: Parallel robust online simple tracking , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[5]  Jiri Matas,et al.  Forward-Backward Error: Automatic Detection of Tracking Failures , 2010, 2010 20th International Conference on Pattern Recognition.

[6]  Horst Bischof,et al.  Real-Time Tracking via On-line Boosting , 2006, BMVC.

[7]  Shai Avidan,et al.  Ensemble Tracking , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  Dorin Comaniciu,et al.  Kernel-Based Object Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  David J. Kriegman,et al.  Visual tracking and recognition using probabilistic appearance manifolds , 2005, Comput. Vis. Image Underst..

[10]  Shai Avidan,et al.  Support vector tracking , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Takahiro Ishikawa,et al.  The template update problem , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  Ehud Rivlin,et al.  Robust Fragments-based Tracking using the Integral Histogram , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[13]  Junseok Kwon,et al.  Visual tracking decomposition , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[14]  Ming-Hsuan Yang,et al.  Robust Object Tracking with Online Multiple Instance Learning , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Junzhou Huang,et al.  Robust tracking using local sparse appearance model and K-selection , 2011, CVPR 2011.

[16]  Yuan Yang,et al.  Graph-based transductive learning for robust visual tracking , 2010, Pattern Recognit..

[17]  David J. Fleet,et al.  Robust Online Appearance Models for Visual Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Ming Tang,et al.  Robust tracking via weakly supervised ranking SVM , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[19]  Yanxi Liu,et al.  Online selection of discriminative tracking features , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Andrew W. Fitzgibbon,et al.  Interactive Feature Tracking using K-D Trees and Dynamic Programming , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[21]  Ying Wu,et al.  Color tracking by transductive learning , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[22]  Michael Isard,et al.  CONDENSATION—Conditional Density Propagation for Visual Tracking , 1998, International Journal of Computer Vision.

[23]  Carlo Tomasi,et al.  Efficient Visual Object Tracking with Online Nearest Neighbor Classifier , 2010, ACCV.

[24]  Horst Bischof,et al.  Semi-supervised On-Line Boosting for Robust Tracking , 2008, ECCV.

[25]  Ming-Hsuan Yang,et al.  Incremental Learning for Robust Visual Tracking , 2008, International Journal of Computer Vision.

[26]  Zdenek Kalal,et al.  Tracking-Learning-Detection , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[28]  Chih-Jen Lin,et al.  LIBLINEAR: A Library for Large Linear Classification , 2008, J. Mach. Learn. Res..

[29]  Junseok Kwon,et al.  Robust visual tracking using autoregressive hidden Markov Model , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[30]  Jason Weston,et al.  Curriculum learning , 2009, ICML '09.

[31]  Haibin Ling,et al.  Robust Visual Tracking and Vehicle Classification via Sparse Representation , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.