Computational intelligence methods in searching of stable configurations of nanostructures

[1]  Michael de la Maza,et al.  Book review: Genetic Algorithms + Data Structures = Evolution Programs by Zbigniew Michalewicz (Springer-Verlag, 1992) , 1993 .

[2]  Adam Mrozek,et al.  Molecular Statics Coupled with the Subregion Boundary Element Method in Multiscale Analysis , 2010 .

[3]  P. Morse Diatomic Molecules According to the Wave Mechanics. II. Vibrational Levels , 1929 .

[4]  Jonathan Timmis,et al.  Artificial immune systems as a novel soft computing paradigm , 2003, Soft Comput..

[5]  J. Doye,et al.  Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms , 1997, cond-mat/9803344.

[6]  Roy L. Johnston,et al.  Modelling of surface relaxation and melting of aluminium , 1997 .

[7]  Fernando José Von Zuben,et al.  Learning and optimization using the clonal selection principle , 2002, IEEE Trans. Evol. Comput..

[8]  Jicheng Zhou,et al.  Particle swarm optimization computer simulation of Ni clusters , 2008 .

[9]  Marvin L. Cohen,et al.  Electronic shell structure in simple metal clusters , 1986 .

[10]  Xueguang Shao,et al.  An adaptive immune optimization algorithm for energy minimization problems. , 2004, The Journal of chemical physics.

[11]  Lesley D. Lloyd,et al.  Modelling aluminium clusters with an empirical many-body potential , 1998 .

[12]  J. Murrell,et al.  Potential energy functions for atomic solids , 1990 .

[13]  R. Johnston,et al.  A genetic algorithm for the structural optimization of Morse clusters , 2000 .

[14]  Nazim Dugan,et al.  Genetic Algorithm Application to the Structural Properties of Si–Ge Mixed Clusters , 2009 .

[15]  Simon D. Elliott,et al.  Clusters of aluminium, a density functional study , 1999 .

[16]  L. Girifalco,et al.  Application of the Morse Potential Function to Cubic Metals , 1959 .