Decoupling Physical from Biological Processes to Assess the Impact of Viruses on a Mesoscale Algal Bloom

[1]  M. Allen,et al.  Reduction in photosystem II efficiency during a virus-controlled Emiliania huxleyi bloom , 2014 .

[2]  E. Boss,et al.  Resurrecting the ecological underpinnings of ocean plankton blooms. , 2014, Annual review of marine science.

[3]  A. Vardi,et al.  Host–virus dynamics and subcellular controls of cell fate in a natural coccolithophore population , 2012, Proceedings of the National Academy of Sciences.

[4]  Y. Amitai,et al.  Long range transport of a quasi isolated chlorophyll patch by an Agulhas ring , 2011 .

[5]  S. De Monte,et al.  Fluid dynamical niches of phytoplankton types , 2010, Proceedings of the National Academy of Sciences.

[6]  B. Worm,et al.  Global phytoplankton decline over the past century , 2010, Nature.

[7]  C. McClain A decade of satellite ocean color observations. , 2009, Annual review of marine science.

[8]  N. Mahowald,et al.  Satellite-detected fluorescence reveals global physiology of ocean phytoplankton , 2008 .

[9]  C. Suttle Marine viruses — major players in the global ecosystem , 2007, Nature Reviews Microbiology.

[10]  F. Azam,et al.  Microbial structuring of marine ecosystems , 2007, Nature Reviews Microbiology.

[11]  Francesco d'Ovidio,et al.  Stirring of the northeast Atlantic spring bloom: A Lagrangian analysis based on multisatellite data , 2007 .

[12]  P. Falkowski,et al.  Viral activation and recruitment of metacaspases in the unicellular coccolithophore, Emiliania huxleyi , 2007, Proceedings of the National Academy of Sciences.

[13]  David A. Siegel,et al.  Climate-driven trends in contemporary ocean productivity , 2006, Nature.

[14]  Howard R. Gordon,et al.  Calcium carbonate measurements in the surface global ocean based on Moderate‐Resolution Imaging Spectroradiometer data , 2005 .

[15]  David A. Siegel,et al.  Carbon‐based ocean productivity and phytoplankton physiology from space , 2005 .

[16]  Paul G. Falkowski,et al.  Cell death in planktonic, photosynthetic microorganisms , 2004, Nature Reviews Microbiology.

[17]  D. Schroeder,et al.  Isolation of viruses responsible for the demise of an Emiliania huxleyi bloom in the English Channel , 2002, Journal of the Marine Biological Association of the United Kingdom.

[18]  G. Haller,et al.  Lagrangian coherent structures and mixing in two-dimensional turbulence , 2000 .

[19]  J. Randerson,et al.  Primary production of the biosphere: integrating terrestrial and oceanic components , 1998, Science.

[20]  W. Balch,et al.  COCCOLITH PRODUCTION AND DETACHMENT BY EMILIANIA HUXLEYI (PRYMNESIOPHYCEAE) 1 , 1993 .

[21]  P. Holligan,et al.  Satellite and ship studies of coccolithophore production along a continental shelf edge , 1983, Nature.

[22]  E. Mauceli,et al.  Viral Glycosphingolipids Induce Lytic Infection and Cell Death in Marine Phytoplankton , 2009 .

[23]  T. Tyrrell,et al.  Emiliania huxleyi: bloom observations and the conditions that induce them , 2004 .

[24]  G. Bratbak,et al.  Viral mortality of the marine alga Emiliania huxleyi (Haptophyceae) and termination of algal blooms , 1993 .

[25]  Ivan Valiela,et al.  Marine Ecological Processes , 1984, Springer Advanced Texts in Life Sciences.