Genetic integrity of sympatric hybridising plant species: the case of Orchis italica and O. anthropophora.

Plant species diversification entails the action of reproductive barriers, which are severely challenged when related species grow in contact and form hybrid progeny. Orchis italica and O. anthropophora are two related orchid species that produce a known hybrid form, O. xbivonae. Here, we analysed a hybrid zone of these two orchids using molecular analysis and experimental crosses. As molecular tools, we employed both real-time PCR and PCR amplification of nuclear markers to evaluate the occurrence of backcross recombination. With these approaches, we demonstrated that all examined hybrids belong to the F(1) generation. Chloroplast DNA analysis showed that O. anthropophora was the maternal species of most of hybrid specimens and that cytoplasmic introgression was lacking in both parental species. Pollination experiments showed that the two orchid species were strictly out-crossing, although self-compatible, and have comparable levels of reproductive fitness in all crossing treatments. Conversely, hybrids demonstrated low reproductive success in all intra- and back-crossing treatments. The absence of any backcross generations and plastid introgression suggest that O. xbivonae does not represent a bridge to gene flow between O. italica and O. anthropophora. Indeed, the low hybrid fitness testifies to the effectiveness of late post-zygotic barriers occurring between the parental species.

[1]  A. Musacchio,et al.  PATTERNS OF REPRODUCTIVE ISOLATION IN MEDITERRANEAN DECEPTIVE ORCHIDS , 2007, Evolution; international journal of organic evolution.

[2]  P. Ruas,et al.  Reproductive isolation in the Aegean Ophrys omegaifera complex (Orchidaceae) , 2007, Plant Systematics and Evolution.

[3]  T. Stuessy,et al.  A screen of low‐copy nuclear genes reveals the LFY gene as phylogenetically informative in closely related species of orchids (Ophrys) , 2007 .

[4]  A. Widmer,et al.  The strength of reproductive isolation in two hybridizing food‐deceptive orchid species , 2007, Molecular ecology.

[5]  J. Pascarella Mechanisms of prezygotic reproductive isolation between two sympatric species, Gelsemium rankinii and G. sempervirens (Gelsemiaceae), in the southeastern United States. , 2007, American journal of botany.

[6]  G. Yue,et al.  Development and characterization of microsatellites in Vanda varieties , 2006 .

[7]  P. Kindlmann,et al.  Mechanisms and evolution of deceptive pollination in orchids , 2006, Biological reviews of the Cambridge Philosophical Society.

[8]  A. Widmer,et al.  Hybridization and conservation of Mediterranean orchids: Should we protect the orchid hybrids or the orchid hybrid zones? , 2006 .

[9]  B. Schatz Fine scale distribution of pollinator explains the occurrence of the natural orchid hybrid ×Orchis bergonii , 2006 .

[10]  A. Widmer,et al.  The evolutionary basis of reproductive isolation in Mediterranean orchids , 2005 .

[11]  R. Saunders,et al.  Hybrid origin of "Bauhinia blakeana" (Leguminosae: Caesalpinioideae), inferred using morphological, reproductive, and molecular data. , 2005, American journal of botany.

[12]  M. Fay,et al.  Barrier to gene flow between two ecologically divergent Populus species, P. alba (white poplar) and P. tremula (European aspen): the role of ecology and life history in gene introgression , 2005, Molecular ecology.

[13]  A. Musacchio,et al.  Confirmation of hybridization among sympatric insular populations of Orchis mascula and O. provincialis , 2005, Plant Systematics and Evolution.

[14]  A. Widmer,et al.  Evidence for reproductive isolate selection in Mediterranean orchids: karyotype differences compensate for the lack of pollinator specificity , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[15]  A. Musacchio,et al.  Molecular Characterization of a Hybrid Zone between Orchis mascula and O. pauciflora in Southern Italy , 2000, Biologia Plantarum.

[16]  W. Rossi,et al.  Genetic variation and natural hybridization betweenOrchis laxiflora andOrchis palustris (Orchidaceae) , 1996, Plant Systematics and Evolution.

[17]  P. Taberlet,et al.  Universal primers for amplification of three non-coding regions of chloroplast DNA , 1991, Plant Molecular Biology.

[18]  M. Chase,et al.  Molecular phylogenetics and evolution of Orchidinae and selected Habenariinae (Orchidaceae) , 2003 .

[19]  J. Doyle,et al.  A phylogenetic analysis of tribe Areceae (Arecaceae) using two low-copy nuclear genes , 2002, Plant Systematics and Evolution.

[20]  N. Barton,et al.  Associations between cytoplasmic and nuclear Loci in hybridizing populations. , 2002, Genetics.

[21]  L. Rieseberg,et al.  Genetic Mapping in Hybrid Zones , 2002, The American Naturalist.

[22]  S. Cozzolino,et al.  Heterochromatin distribution in selected taxa of the 42-chromosomes Orchis s. l. (Orchidaceae) , 2002 .

[23]  P. Keim,et al.  HYBRID POPULATIONS SELECTIVELY FILTER GENE INTROGRESSION BETWEEN SPECIES , 2001, Evolution; international journal of organic evolution.

[24]  L H. Rieseberg,et al.  Chromosomal rearrangements and speciation. , 2001, Trends in ecology & evolution.

[25]  N. Barton The role of hybridization in evolution , 2001, Molecular ecology.

[26]  N. Waser,et al.  Tests of pre- and postpollination barriers to hybridization between sympatric species of Ipomopsis (Polemoniaceae). , 2001, American journal of botany.

[27]  S. Aceto,et al.  Pollination Flow in Hybrid Formation between Orchis morio and Orchis papilionacea (Orchidaceae) in Two Different Habitats , 1999, International Journal of Plant Sciences.

[28]  D. Jones,et al.  Characterisation of natural hybrids between Pterostylis alveata Garnet and Pterostylis ophioglossa R. Br. (Orchidaceae) by starch gel electrophoresis , 1999 .

[29]  T. A. Hall,et al.  BIOEDIT: A USER-FRIENDLY BIOLOGICAL SEQUENCE ALIGNMENT EDITOR AND ANALYSIS PROGRAM FOR WINDOWS 95/98/ NT , 1999 .

[30]  G. Kamari,et al.  A cytological study of 28 phanerogams from the mountains of SE Sterea Ellas, Greece , 1997 .

[31]  Loren H. Rieseberg,et al.  Hybrid Origins of Plant Species , 1997 .

[32]  J. Leebens-Mack,et al.  Nuclear DNA‐based markers for plant evolutionary biology , 1997, Molecular ecology.

[33]  L. Rieseberg,et al.  Distribution of spontaneous plant hybrids. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[34]  L. Rieseberg,et al.  INTERSPECIFIC POLLEN COMPETITION AS A REPRODUCTIVE BARRIER BETWEEN SYMPATRIC SPECIES OF HELIANTHUS (ASTERACEAE) , 1995 .

[35]  X. S. Zhang,et al.  Interorgan regulation of ethylene biosynthetic genes by pollination. , 1993, The Plant cell.

[36]  M. Arnold,et al.  NATURAL HYBRIDIZATION BETWEEN IRIS FULVA AND IRIS HEXAGONA: PATTERN OF RIBOSOMAL DNA VARIATION , 1990, Evolution; international journal of organic evolution.

[37]  J. Doyle,et al.  A rapid DNA isolation procedure for small amounts of fresh leaf tissue , 1987 .

[38]  A. Cauwet-Marc,et al.  «Les Orchidées du bassin méditerranéen» Contribution à l'étude caryologique des espèces des Pyrénées-Orientales (France) et contrées limitrophes. II: Tribu des Ophrydae Lindl. proparte , 1986 .

[39]  E. Pahlich,et al.  A rapid DNA isolation procedure for small quantities of fresh leaf tissue , 1980 .