Enzymatic variability in Aedes aegypti (Diptera: Culicidae) populations from Manaus-AM, Brazil

Eighteen enzymatic loci were analysed in Aedes aegypti populations from four neighbourhoods in the city of Manaus. The analyses showed that the Downtown population was the most polymorphic (p = 55.6%) with higher observed and expected mean heterozygosities (Ho = 0.152 ± 0.052; He = 0.174 ± 0.052, respectively). The least variability was detected in the Coroado and Cidade Nova populations, both with polymorphism of 44.4%. The latter population presented the least observed heterozygosity (Ho = 0.109 ± 0.037). Wright's F statistics showed that the mean value of Fis was higher than that of Fst (Fis = 0.164 > Fst = 0.048), and from analysis of molecular variance (AMOVA) it was found that 95.12% of the variability is found within populations indicating a certain intra-population differentiation possibly of the microgeographic structure resulting from some barrier in the random coupling. Although the four populations were similar genetically (D = 0.003 to 0.016), the 4.88% differentiation was significant.

[1]  G. Cuny,et al.  Microsatellite markers for population genetic studies in Aedes aegypti (Diptera: Culicidae) from Côte d'Ivoire: evidence for a microgeographic genetic differentiation of mosquitoes from Bouaké. , 2002, Acta tropica.

[2]  N. A. Honório,et al.  Freqüência de larvas e pupas de Aedes aegypti e Aedes albopictus em armadilhas, Brasil , 2001 .

[3]  A. Blanco,et al.  Genetic Relationships Among Aedes aegypti (Diptera: Culicidae) Populations from Argentina Using Random Amplified Polymorphic DNA Polymerase Chain Reaction Markers , 2001, Journal of medical entomology.

[4]  G. B. de Sousa,et al.  Allozymic polymorphism in Aedes aegypti populations from Argentina. , 2000, Journal of the American Mosquito Control Association.

[5]  H. Schatzmayr Dengue situation in Brazil by year 2000. , 2000, Memorias do Instituto Oswaldo Cruz.

[6]  W. Tadei,et al.  Intrapopulational genetic differentiation in Anopheles (N.) darlingi Root, 1926 (Diptera: Culicidae) in the amazon region , 1999 .

[7]  D. Chadee,et al.  Population genetics of the yellow fever mosquito in Trinidad: comparisons of amplified fragment length polymorphism (AFLP) and restriction fragment length polymorphism (RFLP) markers , 1999, Molecular ecology.

[8]  W. Tadei,et al.  Population structure and genetic divergence in Anopheles nuneztovari (Diptera: Culicidae) from Brazil and Colombia. , 1999, The American journal of tropical medicine and hygiene.

[9]  S. Lam-Phua,et al.  Monitoring of dengue viruses in field-caught Aedes aegypti and Aedes albopictus mosquitoes by a type-specific polymerase chain reaction and cycle sequencing. , 1998, The American journal of tropical medicine and hygiene.

[10]  M. Raymond,et al.  Insecticide resistance genes in mosquitoes: their mutations, migration, and selection in field populations. , 1996, The Journal of heredity.

[11]  E. Contel,et al.  Enzymatic variability in natural populations of Aedes aegypti (Diptera:Culicidae) from Brazil. , 1996, Journal of medical entomology.

[12]  W. Tadei,et al.  Electrophoretic analysis of 11 enzymes in natural populations of Anopheles (N.) darlingi Root, 1926 )Diptera: Culicidae) in the Amazon region , 1996 .

[13]  B. Miller,et al.  Population genetics with RAPD-PCR markers: the breeding structure of Aedes aegypti in Puerto Rico , 1996, Heredity.

[14]  L. Excoffier,et al.  A generic estimation of population subdivision using distances between alleles with special reference for microsatellite loci. , 1996, Genetics.

[15]  H. Darius,et al.  Genetic differentiation of Aedes aegypti, the vector of dengue virus in French Polynesia. , 1995, Journal of the American Mosquito Control Association.

[16]  Rotraut A. G. B. Consoli,et al.  Principais mosquitos de importância sanitária no Brasil , 1994 .

[17]  B. Crouau‐Roy Genetic structure of cave-dwelling beetles populations: significant deficiencies of heterozygotes , 1988, Heredity.

[18]  G. Wallis,et al.  Population genetic structure of the yellow fever mosquito Aedes aegypti in the Caribbean: ecological considerations , 1985 .

[19]  R. Ferrell,et al.  Genetic variation in an urban population of Aedes aegypti (Diptera: Culicidae). , 1984, Journal of medical entomology.

[20]  B. Weir,et al.  ESTIMATING F‐STATISTICS FOR THE ANALYSIS OF POPULATION STRUCTURE , 1984, Evolution; international journal of organic evolution.

[21]  J. Powell,et al.  Genetic heterogeneity among Caribbean populations of Aedes aegypti. , 1984, The American journal of tropical medicine and hygiene.

[22]  W. Tabachnick Geographic and temporal patterns of genetic variation of Aedes aegypti in New Orleans. , 1982, The American journal of tropical medicine and hygiene.

[23]  Joselita Maria Mendes dos Santos,et al.  Biologia de anofelinos amazônicos. 1 - Ciclo biológico, postura e estádios larvais de Anopheles darlingi Root 1926 (Diptera: Culicidae) da Rodovia Manaus - Boa Vista , 1981 .

[24]  R. B. Selander,et al.  BIOSYS-1: a FORTRAN program for the comprehensive analysis of electrophoretic data in population genetics and systematics , 1981 .

[25]  D. Hartl,et al.  A primer of population genetics , 1981 .

[26]  J. Powell,et al.  GENETIC DISTINCTNESS OF SYMPATRIC FORMS OF AEDES AEGYPTI IN EAST AFRICA , 1979, Evolution; international journal of organic evolution.

[27]  R. K. Koehn,et al.  AN ANALYSIS OF GENETIC STRUCTURE IN THE MONARCH BUTTERFLY, DANAUS PLEXIPPUS L. , 1978, Evolution; international journal of organic evolution.

[28]  M. Nei,et al.  Estimation of average heterozygosity and genetic distance from a small number of individuals. , 1978, Genetics.

[29]  J. Powell,et al.  Genetic structure of the East African domestic populations of Aedes aegypti , 1978, Nature.

[30]  M. Nei,et al.  THE BOTTLENECK EFFECT AND GENETIC VARIABILITY IN POPULATIONS , 1975, Evolution; international journal of organic evolution.

[31]  Masatoshi Nei,et al.  Genetic Distance between Populations , 1972, The American Naturalist.