The Hamiltonian structure and Euler-Poincaré formulation of the Vlasov-Maxwell and gyrokinetic systems

We present a new variational principle for the gyrokinetic system, similar to the Maxwell-Vlasov action presented in H. Cendra et al., [J. Math. Phys. 39, 3138 (1998)]. The variational principle is in the Eulerian frame and based on constrained variations of the phase space fluid velocity and particle distribution function. Using a Legendre transform, we explicitly derive the field theoretic Hamiltonian structure of the system. This is carried out with a modified Dirac theory of constraints, which is used to construct meaningful brackets from those obtained directly from Euler-Poincare theory. Possible applications of these formulations include continuum geometric integration techniques, large-eddy simulation models, and Casimir type stability methods.

[1]  S. Reich,et al.  Numerical methods for Hamiltonian PDEs , 2006 .

[2]  Hong Qin,et al.  Geometric integration of the Vlasov-Maxwell system with a variational particle-in-cell scheme , 2012, 1401.6723.

[3]  Keenan Crane,et al.  Energy-preserving integrators for fluid animation , 2009, SIGGRAPH 2009.

[4]  R. McLachlan,et al.  Explicit Lie-Poisson integration and the Euler equations. , 1993, Physical review letters.

[5]  Morrison,et al.  Local conservation laws for the Maxwell-Vlasov and collisionless kinetic guiding-center theories. , 1985, Physical review. A, General physics.

[6]  J. Marsden,et al.  Structure-preserving discretization of incompressible fluids , 2009, 0912.3989.

[7]  Philip J. Morrison,et al.  Poisson brackets for fluids and plasmas , 1982 .

[8]  William McCay Nevins,et al.  Geometric gyrokinetic theory for edge plasmasa) , 2007 .

[9]  Darryl D. Holm,et al.  The Euler–Poincaré Equations and Semidirect Products with Applications to Continuum Theories , 1998, chao-dyn/9801015.

[10]  A. Brizard,et al.  Hamiltonian formulation of reduced Vlasov-Maxwell equations , 2008, 1211.0850.

[11]  Darryl D. Holm,et al.  Direct numerical simulations of the Navier–Stokes alpha model , 1999, Physica D: Nonlinear Phenomena.

[12]  Darryl D. Holm,et al.  Euler-Poincare Formulation Of Hybrid Plasma Models , 2010, 1012.0999.

[13]  M. Kruskal,et al.  On the Stability of Plasma in Static Equilibrium , 1958 .

[14]  P. Similon Conservation laws for relativistic guiding-center plasma , 1985 .

[15]  Darryl D. Holm,et al.  Multisymplectic formulation of fluid dynamics using the inverse map , 2007, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[16]  New method of deriving local energy- and momentum-conserving Maxwell-collisionless drift-kinetic and gyrokinetic theories: basic theory , 2004, Journal of Plasma Physics.

[17]  Alain J. Brizard,et al.  Variational principle for nonlinear gyrokinetic Vlasov–Maxwell equations , 2000 .

[18]  J. Marsden,et al.  Discrete mechanics and variational integrators , 2001, Acta Numerica.

[19]  D. Schmidt,et al.  Accuracy and conservation properties of a three-dimensional unstructured staggered mesh scheme for fluid dynamics , 2002 .

[20]  P. Morrison,et al.  Noncanonical Hamiltonian Density Formulation of Hydrodynamics and Ideal Magnetohydrodynamics. , 1980 .

[21]  F. Jenko,et al.  Gyrokinetic Large Eddy Simulations , 2011, 1104.2422.

[22]  P. Morrison,et al.  The energy-momentum tensor for the linearized Maxwell-Vlasov and kinetic guiding center theories , 1991 .

[23]  A. Brizard,et al.  New variational principle for the Vlasov-Maxwell equations. , 2000, Physical review letters.

[24]  T. Flå Action principle and the Hamiltonian formulation for the Maxwell–Vlasov equations on a symplectic leaf , 1994 .

[25]  Noether formalism with gauge-invariant variations , 2004 .

[26]  F. Low,et al.  A Lagrangian formulation of the Boltzmann-Vlasov equation for plasmas , 1958, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[27]  J. Krommes,et al.  Nonlinear gyrokinetic equations , 1983 .

[28]  R. Littlejohn Hamiltonian perturbation theory in noncanonical coordinates , 1982 .

[29]  B. Scott,et al.  Energetic consistency and momentum conservation in the gyrokinetic description of tokamak plasmas , 2010, 1008.1244.

[30]  P. Morrison,et al.  The Maxwell-Vlasov equations as a continuous hamiltonian system , 1980 .

[31]  H. Gümral Geometry of plasma dynamics. I. Group of canonical diffeomorphisms , 2010 .

[32]  Jerrold E. Marsden,et al.  Geometric Computational Electrodynamics with Variational Integrators and Discrete Differential Forms , 2007, 0707.4470.

[33]  P. Morrison,et al.  The Hamiltonian description of incompressible fluid ellipsoids , 2008, 0811.4439.

[34]  Darryl D. Holm,et al.  The Effect of Subfilter-Scale Physics on Regularization Models , 2010, J. Sci. Comput..

[35]  Hong Qin,et al.  Variational symplectic algorithm for guiding center dynamics in the inner magnetosphere , 2011 .

[36]  J. Krommes,et al.  The Gyrokinetic Description of Microturbulence in Magnetized Plasmas , 2012 .

[37]  Cristel Chandre,et al.  On the use of projectors for Hamiltonian systems and their relationship with Dirac brackets , 2012, 1205.2347.

[38]  Alain J. Brizard,et al.  Foundations of Nonlinear Gyrokinetic Theory , 2007 .

[39]  J. Marsden,et al.  Asynchronous Variational Integrators , 2003 .

[40]  F. Jenko,et al.  Dynamic procedure for filtered gyrokinetic simulations , 2011, 1110.0747.

[41]  Jerrold E. Marsden,et al.  Lagrangian Averaging for Compressible Fluids , 2005, Multiscale Model. Simul..

[42]  Hong Qin,et al.  Variational symplectic integrator for long-time simulations of the guiding-center motion of charged particles in general magnetic fields. , 2008, Physical review letters.

[43]  H. Sugama Gyrokinetic field theory , 2000 .

[44]  Jerrold E. Marsden,et al.  The Hamiltonian structure of the Maxwell-Vlasov equations , 1982 .

[45]  Margaret H. Wright,et al.  The opportunities and challenges of exascale computing , 2010 .

[46]  Evan S. Gawlik,et al.  Geometric, variational discretization of continuum theories , 2010, 1010.4851.

[47]  Derivation of reduced two-dimensional fluid models via Dirac’s theory of constrained Hamiltonian systems , 2010, 1001.4629.

[48]  Yiying Tong,et al.  Stable, circulation-preserving, simplicial fluids , 2007, TOGS.

[49]  Jerrold E. Marsden,et al.  Nonlinear stability of fluid and plasma equilibria , 1985 .

[50]  P. Morrison,et al.  On the Hamiltonian formulation of incompressible ideal fluids and magnetohydrodynamics via Dirac's theory of constraints , 2011, 1110.6891.

[51]  D. Pfirsch,et al.  Poisson brackets for guiding-centre and gyrocentre theories , 2005, Journal of Plasma Physics.

[52]  C. Tronci A Lagrangian kinetic model for collisionless magnetic reconnection , 2012, 1208.5674.

[53]  J. Marsden,et al.  Multisymplectic Geometry, Variational Integrators, and Nonlinear PDEs , 1998, math/9807080.

[54]  Alain J. Brizard,et al.  Nonlinear gyrokinetic theory for finite‐beta plasmas , 1988 .

[55]  Jerrold E. Marsden,et al.  Hamilton–Pontryagin Integrators on Lie Groups Part I: Introduction and Structure-Preserving Properties , 2008, Found. Comput. Math..

[56]  Darryl D. Holm Lagrangian averages, averaged Lagrangians, and the mean effects of fluctuations in fluid dynamics. , 2002, Chaos.

[57]  P. Morrison,et al.  A general theory for gauge-free lifting , 2010, 1210.6564.

[58]  Darryl D. Holm,et al.  Camassa-Holm Equations as a Closure Model for Turbulent Channel and Pipe Flow , 1998, chao-dyn/9804026.

[59]  T. Hahm,et al.  Turbulent transport reduction by zonal flows: massively parallel simulations , 1998, Science.

[60]  Huanchun Ye,et al.  Action principles for the Vlasov equation , 1992 .

[61]  Paul Adrien Maurice Dirac Generalized Hamiltonian dynamics , 1950 .

[62]  Noether methods for fluids and plasmas , 2004, Journal of Plasma Physics.

[63]  T. Ribeiro,et al.  Nonlinear Dynamics in the Tokamak Edge , 2010 .

[64]  Covariant Lagrangian Methods of Relativistic Plasma Theory , 2003, physics/0307148.

[65]  H. Qin,et al.  Gauge properties of the guiding center variational symplectic integrator , 2012, 1401.6725.