Asymptotics for the First Passage Times of Lévy Processes and Random Walks

We study the exact asymptotics for the distribution of the first time, τ x , a Lévy process X t crosses a fixed negative level -x. We prove that ℙ{τ x >t} ~V(x) ℙ{X t ≥0}/t as t→∞ for a certain function V(x). Using known results for the large deviations of random walks, we obtain asymptotics for ℙ{τ x >t} explicitly in both light- and heavy-tailed cases.

[1]  V. V. Petrov On the Probabilities of Large Deviations for Sums of Independent Random Variables , 1965 .

[2]  B. A. Rogozin On Distributions of Functionals Related to Boundary Problems for Processes with Independent Increments , 1966 .

[3]  Vincent Hodgson,et al.  The Single Server Queue. , 1972 .

[4]  L. V. Osipov On Probabilities of Large Deviations for Sums of Independent Random Variables , 1973 .

[5]  Charles M. Goldie,et al.  Subexponentiality and infinite divisibility , 1979 .

[6]  J. Teugels,et al.  On the asymptotic behaviour of the distributions of the busy period and service time in M/G/1 , 1980, Journal of Applied Probability.

[7]  J. Geluk Π-regular variation , 1981 .

[8]  Paul Embrechts,et al.  A limit theorem for the tails of discrete infinitely divisible laws with applications to fluctuation theory , 1982, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.

[9]  C. Klüppelberg Subexponential distributions and integrated tails. , 1988 .

[10]  Claudia Kliippelberg,et al.  Subexponential distributions and characterizations of related classes , 1989 .

[11]  R. Doney,et al.  On the asymptotic behaviour of first passage times for transient random walk , 1989 .

[12]  A. Shiryayev On Sums of Independent Random Variables , 1992 .

[13]  L. Rozovskii Probabilities of large deviations on the whole axis , 1994 .

[14]  Jean Bertoin,et al.  Some asymptotic results for transient random walks , 1996, Advances in Applied Probability.

[15]  Charles M. Grinstead,et al.  Introduction to probability , 1999, Statistics for the Behavioural Sciences.

[16]  Ward Whitt,et al.  Asymptotics for M/G/1 low-priority waiting-time tail probabilities , 1997, Queueing Syst. Theory Appl..

[17]  K. Sigman,et al.  Sampling at subexponential times, with queueing applications , 1999 .

[18]  Serguei Foss,et al.  Sampling at a Random Time with a Heavy-Tailed Distribution , 2000 .

[19]  A. P. Zwart,et al.  Tail Asymptotics for the Busy Period in the GI/G/1 Queue , 2001, Math. Oper. Res..

[20]  S. Asmussen,et al.  Asymptotics for Sums of Random Variables with Local Subexponential Behaviour , 2003, 1303.4709.

[21]  Anthony G. Pakes Convolution equivalence and infinite divisibility , 2004, Journal of Applied Probability.

[22]  On the Asymptotic Behavior of the Distributions of First-Passage Times, I , 2004 .

[23]  A. Baltr,et al.  Tail behaviour of the busy period of a GI/GI/1 queue with subexponential service times , 2004 .

[24]  Predrag R. Jelenkovic,et al.  Large Deviations of Square Root Insensitive Random Sums , 2004, Math. Oper. Res..

[25]  Moments of passage times for Lévy processes , 2004 .

[26]  Zbigniew Palmowski,et al.  On the busy period asymptotics of GI/G/1 queues. , 2005 .

[27]  Z. Palmowski,et al.  On the exact asymptotics of the busy period in GI/G/1 queues , 2006, Advances in Applied Probability.

[28]  Z. Palmowski,et al.  Quasi-stationary distributions for Lévy processes , 2006 .

[29]  A. Mogulskii Large deviations of the first passage time for a random walk with semiexponentially distributed jumps , 2006 .

[30]  D. Denisov,et al.  Large deviations for random walks under subexponentiality: The big-jump domain , 2007, math/0703265.

[31]  佐藤 健一 Lévy processes and infinitely divisible distributions , 2013 .