Perfectly matched 20-nucleotide guide RNA sequences enable robust genome editing using high-fidelity SpCas9 nucleases

[1]  David R. Liu,et al.  Improving the DNA specificity and applicability of base editing through protein engineering and protein delivery , 2017, Nature Communications.

[2]  Eva Konečná,et al.  A Multipurpose Toolkit to Enable Advanced Genome Engineering in Plants[OPEN] , 2017, Plant Cell.

[3]  Erik L. G. Wernersson,et al.  BLISS is a versatile and quantitative method for genome-wide profiling of DNA double-strand breaks , 2017, Nature Communications.

[4]  Leslie S. Edwards,et al.  Mapping the genomic landscape of CRISPR–Cas9 cleavage , 2017, Nature Methods.

[5]  Rui Zhang,et al.  Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion , 2017, Nature Biotechnology.

[6]  Yanpeng Wang,et al.  Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes , 2017, Nature Communications.

[7]  Chance M. Nowak,et al.  Guide RNA engineering for versatile Cas9 functionality , 2016, Nucleic acids research.

[8]  Simon L. Bullock,et al.  Augmenting CRISPR applications in Drosophila with tRNA-flanked sgRNAs , 2016, Nature Methods.

[9]  Jin-Soo Kim,et al.  Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells , 2016, Nature Biotechnology.

[10]  Martin J. Aryee,et al.  Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells , 2016, Nature Biotechnology.

[11]  J. Joung,et al.  High-fidelity CRISPR-Cas9 variants with undetectable genome-wide off-targets , 2015, Nature.

[12]  David A. Scott,et al.  Rationally engineered Cas9 nucleases with improved specificity , 2015, Science.

[13]  David R. Liu,et al.  Small Molecule-Triggered Cas9 Protein with Improved Genome-Editing Specificity , 2015, Nature chemical biology.

[14]  David A. Scott,et al.  In vivo genome editing using Staphylococcus aureus Cas9 , 2015, Nature.

[15]  Kabin Xie,et al.  Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system , 2015, Proceedings of the National Academy of Sciences.

[16]  Jong-il Kim,et al.  Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells , 2015, Nature Methods.

[17]  Feng Zhang,et al.  A split-Cas9 architecture for inducible genome editing and transcription modulation , 2015, Nature Biotechnology.

[18]  Martin J. Aryee,et al.  GUIDE-Seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases , 2014, Nature Biotechnology.

[19]  Masaki Endo,et al.  Multigene Knockout Utilizing Off-Target Mutations of the CRISPR/Cas9 System in Rice , 2014, Plant & cell physiology.

[20]  J. Keith Joung,et al.  Efficient Delivery of Genome-Editing Proteins In Vitro and In Vivo , 2014, Nature Biotechnology.

[21]  Yanpeng Wang,et al.  Genome editing in rice and wheat using the CRISPR/Cas system , 2014, Nature Protocols.

[22]  Meagan E. Sullender,et al.  Rational design of highly active sgRNAs for CRISPR-Cas9–mediated gene inactivation , 2014, Nature Biotechnology.

[23]  Yang Lei,et al.  CRISPR-P: a web tool for synthetic single-guide RNA design of CRISPR-system in plants. , 2014, Molecular plant.

[24]  Yanpeng Wang,et al.  Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew , 2014, Nature Biotechnology.

[25]  Daesik Kim,et al.  Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins , 2014, Genome research.

[26]  Daniel F. Voytas,et al.  Precision Genome Engineering and Agriculture: Opportunities and Regulatory Challenges , 2014, PLoS biology.

[27]  E. Lander,et al.  Development and Applications of CRISPR-Cas9 for Genome Engineering , 2014, Cell.

[28]  David R. Liu,et al.  Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification , 2014, Nature Biotechnology.

[29]  Martin J. Aryee,et al.  Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing , 2014, Nature Biotechnology.

[30]  J. Keith Joung,et al.  Improving CRISPR-Cas nuclease specificity using truncated guide RNAs , 2014, Nature Biotechnology.

[31]  Jin-Soo Kim,et al.  Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases , 2014, Bioinform..

[32]  Jin-Soo Kim,et al.  Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases , 2014, Genome research.

[33]  David A. Scott,et al.  Double Nicking by RNA-Guided CRISPR Cas9 for Enhanced Genome Editing Specificity , 2013, Cell.

[34]  David R. Liu,et al.  High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity , 2013, Nature Biotechnology.

[35]  Jun Li,et al.  Targeted genome modification of crop plants using a CRISPR-Cas system , 2013, Nature Biotechnology.

[36]  G. Church,et al.  CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering , 2013, Nature Biotechnology.

[37]  Eli J. Fine,et al.  DNA targeting specificity of RNA-guided Cas9 nucleases , 2013, Nature Biotechnology.

[38]  J. Keith Joung,et al.  High frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells , 2013, Nature Biotechnology.

[39]  James E. DiCarlo,et al.  RNA-Guided Human Genome Engineering via Cas9 , 2013, Science.

[40]  Le Cong,et al.  Multiplex Genome Engineering Using CRISPR/Cas Systems , 2013, Science.

[41]  Seung Woo Cho,et al.  Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease , 2013, Nature Biotechnology.

[42]  J. Doudna,et al.  A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity , 2012, Science.