Combining Enumeration and Deductive Techniques in order to Increase the Class of Constructible Infinite Models

Abstract A new method for building infinite models for first-order formulae is presented. The method combines enumeration techniques with existing deductive (in a broad sense) ones. Its soundness and completeness w.r.t. the class of models that can be represented by equational constraints are proven. This shows that the use of enumeration techniques strictly increases the power of existing methods for building Herbrand models that are not complete in this sense. Some strategies are proposed to reduce the search space. We give examples and show how to use this approach for building interactively a model of a formula introduced by Goldfarb in his proof of the undecidability of the Godel class with identity. This formula is satisfiable but has no finite model.

[1]  Ricardo Caferra,et al.  A Method for Simultanous Search for Refutations and Models by Equational Constraint Solving , 1992, J. Symb. Comput..

[2]  Ricardo Caferra,et al.  Extending Resolution for Model Construction , 1990, JELIA.

[3]  Melvin Fitting,et al.  First-Order Logic and Automated Theorem Proving , 1990, Graduate Texts in Computer Science.

[4]  G. Sutcliffe,et al.  The TPTP Problem Library, Release v1.2.0 , 1995 .

[5]  Christian G. Fermüller,et al.  Decision Procedures and Model Building in Equational Clause Logic , 1998, Log. J. IGPL.

[6]  C. Kirchner,et al.  Deduction with symbolic constraints , 1990 .

[7]  Ricardo Caferra,et al.  Building Models by Using Tableaux Extended by Equational Problems , 1993 .

[8]  Hilary Putnam,et al.  A Computing Procedure for Quantification Theory , 1960, JACM.

[9]  Hans Hahn,et al.  Ergebnisse eines mathematischen Kolloquiums , 1932 .

[10]  Nicolas Peltier,et al.  Tree Automata and Automated Model Building , 1997, Fundam. Informaticae.

[11]  Miyuki Koshimura,et al.  MGTP: A Parallel Theorem Prover Based on Lazy Model Generation , 1992, CADE.

[12]  W. McCune A Davis-Putnam program and its application to finite-order model search: Quasigroup existence problems , 1994 .

[13]  Stefan Klingenbeck Counter examples in semantic tableaux , 1997, DISKI.

[14]  François Bry,et al.  SATCHMO: A Theorem Prover Implemented in Prolog , 1988, CADE.

[15]  Nicolas Peltier System Description: An Equational Constraints Solver , 1998, CADE.

[16]  R. Smullyan First-Order Logic , 1968 .

[17]  Ricardo Caferra,et al.  A Method for Building Models Automatically. Experiments with an Extension of OTTER , 1994, CADE.

[18]  Nicolas Peltier,et al.  A New Method for Automated Finite Model Building Exploiting Failures and Symmetries , 1998, J. Log. Comput..

[19]  David A. Plaisted,et al.  Model Finding in Semantically Guided Instance-Based Theorem Proving , 1994, Fundam. Informaticae.

[20]  Hubert Comon-Lundh,et al.  Equational Problems and Disunification , 1989, J. Symb. Comput..

[21]  Tanel Tammet Using Resolution for Deciding Solvable Classes and Building Finite Models , 1991, Baltic Computer Science.

[22]  Hantao Zhang,et al.  SATO: An Efficient Propositional Prover , 1997, CADE.

[23]  David A. Plaisted,et al.  A Structure-Preserving Clause Form Translation , 1986, J. Symb. Comput..

[24]  Christian G. Fermüller,et al.  Hyperresolution and Automated Model Building , 1996, J. Log. Comput..

[25]  François Bry,et al.  Minimal Model Generation with Positive Unit Hyper-Resolution Tableaux , 1996, TABLEAUX.

[26]  Thomas Rath,et al.  On the Practical Value of Different Definitional Translations to Normal Form , 1996, CADE.

[27]  Steven K. Winker Generation and Verification of Finite Models and Counterexamples Using an Automated Theorem Prover Answering Two Open Questions , 1982, JACM.

[28]  Robert Matzinger Computational Representations of Herbrand Models Using Grammars , 1996, CSL.

[29]  Nicolas Peltier Increasing Model Building Capabilities by Constraint Solving on Terms with Integer Exponents , 1997, J. Symb. Comput..

[30]  John W. Dawson,et al.  Ergebnisse eines Mathematischen Kolloquiums , 1998 .

[31]  Christian G. Fermüller,et al.  Resolution Methods for the Decision Problem , 1993, Lecture Notes in Computer Science.

[32]  Nicolas PeltierLaboratory LEIBNIZ-IMAG Can Model Builders Help Logicians in Building In nite Models ? , .

[33]  B. Dreben,et al.  The decision problem: Solvable classes of quantificational formulas , 1979 .

[34]  Monatshefte für Mathematik und Physik (Wien) , 1891 .

[35]  Thierry Boy de la Tour An Optimality Result for Clause Form Translation , 1992, J. Symb. Comput..

[36]  Peter Baumgartner,et al.  Hyper Tableaux , 1996, JELIA.

[37]  Hantao Zhang,et al.  SEM: a System for Enumerating Models , 1995, IJCAI.

[38]  Ricardo Caferra A Tableaux Method for Systematic Simultaneous Search for Refutationas and Models Using Equational Problems , 1993, J. Log. Comput..

[39]  Nicolas Peltier,et al.  Simplifying and Generalizing Formulae in Tableaux. Pruning the Search Space and Building Models , 1997, TABLEAUX.

[40]  Warren D. Goldfarb The Unsolvability of the Godel Class with Identity , 1984, J. Symb. Log..

[41]  Dines Bjørner,et al.  Baltic Computer Science , 1991, Lecture Notes in Computer Science.

[42]  John K. Slaney SCOTT: A Model-Guided Theorem Prover , 1993, IJCAI.

[43]  John K. Slaney,et al.  FINDER: Finite Domain Enumerator - System Description , 1994, CADE.