Chromosome dynamics, molecular crowding, and diffusion in the interphase cell nucleus: a Monte Carlo lattice simulation study

[1]  J. Langowski,et al.  Anomalous diffusion in the interphase cell nucleus: the effect of spatial correlations of chromatin. , 2010, The Journal of chemical physics.

[2]  Jan Ellenberg,et al.  Molecular crowding affects diffusion and binding of nuclear proteins in heterochromatin and reveals the fractal organization of chromatin , 2009, The EMBO journal.

[3]  I. Amit,et al.  Comprehensive mapping of long range interactions reveals folding principles of the human genome , 2011 .

[4]  J. Langowski,et al.  How proteins squeeze through polymer networks: a Cartesian lattice study. , 2009, The Journal of chemical physics.

[5]  J. Langowski,et al.  Mapping eGFP Oligomer Mobility in Living Cell Nuclei , 2009, PloS one.

[6]  T. C. B. McLeish,et al.  Polymer Physics , 2009, Encyclopedia of Complexity and Systems Science.

[7]  U. Kubitscheck,et al.  Single molecule tracking for studying nucleocytoplasmic transport and intranuclear dynamics. , 2009, Methods in molecular biology.

[8]  Ralf Everaers,et al.  Structure and Dynamics of Interphase Chromosomes , 2008, PLoS Comput. Biol..

[9]  A. Verkman,et al.  Crowding effects on diffusion in solutions and cells. , 2008, Annual review of biophysics.

[10]  J. Langowski,et al.  The role of chromatin conformations in diffusional transport of chromatin-binding proteins: Cartesian lattice simulations. , 2008, The Journal of chemical physics.

[11]  Gernot Guigas,et al.  Sampling the cell with anomalous diffusion - the discovery of slowness. , 2008, Biophysical journal.

[12]  Dieter W Heermann,et al.  Random loop model for long polymers. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  J. Langowski,et al.  Modeling diffusional transport in the interphase cell nucleus. , 2007, The Journal of chemical physics.

[14]  P. Lichter,et al.  Histone acetylation increases chromatin accessibility , 2005, Journal of Cell Science.

[15]  P. Lichter,et al.  Mobility of multi-subunit complexes in the nucleus: accessibility and dynamics of chromatin subcompartments , 2005, Histochemistry and Cell Biology.

[16]  Karsten Rippe,et al.  Nuclear body movement is determined by chromatin accessibility and dynamics. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[17]  R. Prud’homme,et al.  Diffusion of compact macromolecules through polymer meshes: mesh dynamics and probe dynamics , 2004 .

[18]  D. Reichman,et al.  Anomalous diffusion probes microstructure dynamics of entangled F-actin networks. , 2004, Physical review letters.

[19]  Yiider Tseng,et al.  Micro-organization and visco-elasticity of the interphase nucleus revealed by particle nanotracking , 2004, Journal of Cell Science.

[20]  J. Politz,et al.  Diffusion-based transport of nascent ribosomes in the nucleus. , 2003, Molecular biology of the cell.

[21]  Gabriele Müller,et al.  Counting nucleosomes in living cells with a combination of fluorescence correlation spectroscopy and confocal imaging. , 2003, Journal of molecular biology.

[22]  Allen P. Minton,et al.  Cell biology: Join the crowd , 2003, Nature.

[23]  James G. McNally,et al.  Large-scale chromatin decondensation and recondensation regulated by transcription from a natural promoter , 2001, The Journal of cell biology.

[24]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[25]  J Langowski,et al.  Anomalous diffusion of fluorescent probes inside living cell nuclei investigated by spatially-resolved fluorescence correlation spectroscopy. , 2000, Journal of molecular biology.

[26]  S. Hell,et al.  Subdiffraction resolution in far-field fluorescence microscopy. , 1999, Optics letters.

[27]  Christian Münkel,et al.  Chromosome structure predicted by a polymer model , 1998 .

[28]  R Eils,et al.  Nuclear architecture and the induction of chromosomal aberrations. , 1996, Mutation research.

[29]  Mason,et al.  Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids. , 1995, Physical review letters.

[30]  J. Sikorav,et al.  Kinetics of chromosome condensation in the presence of topoisomerases: a phantom chain model. , 1994, Biophysical journal.

[31]  M. Saxton Anomalous diffusion due to obstacles: a Monte Carlo study. , 1994, Biophysical journal.

[32]  A. C. Maggs,et al.  Dynamic scattering from semiflexible polymers , 1993 .

[33]  Nakanishi,et al.  Autocorrelation functions for discrete random walks on disordered lattice. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[34]  Kurt Kremer,et al.  The bond fluctuation method: a new effective algorithm for the dynamics of polymers in all spatial dimensions , 1988 .

[35]  S. Edwards,et al.  The Theory of Polymer Dynamics , 1986 .

[36]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.