Risk management for forestry planning under uncertainty in demand and prices

The paper presents and compares approaches for controlling forest companies’ risk associated with advance planning under variable future timber prices and demand. Decisions to be made in advance are which stands to cut and which new access roads to build in each period, while maximizing profit under manageable risk. We first developed a tighter, improved formulation of our earlier deterministic mixed 0–1 model (see Andalaft et al. (2003)), and its stochastic counterpart for a set of representative scenarios, an extension of our simplified risk-neutral version (see Alonso-Ayuso, Escudero, Guignard, Quinteros, and Weintraub (2011)). Using the expected value of the stochastic parameters might produce poor or even infeasible solutions if some extreme scenarios are realized. A stochastic model, however, enables the planner to make more robust decisions. In particular, being able to control risk in early periods is important, as firms tend to emphasize short term financial results. We tested two risk measures that extend the classical Conditional Value-at-Risk (CVaR) by controlling the risk at a subset of intermediate periods (time-inconsistent TCVaR) or at a subset of scenario groups (time-consistent ECVaR), with time consistency as given in Homem-de Mello and Pagnoncelli (2016) and others. We also combined TCVaR and ECVaR into what we call MCVaR. We analyzed the planned and implementable policies of all above risk measures in a broad computational experiment, on a large size realistic instance. The results show that ECVaR, TCVaR and MCVaR outperform the classical CVaR approach. MCVAR usually provides better solutions for the first periods with overall profit distribution similar to the other measures for the planned policy, TCVaR gives the highest profit results for the implementable policy, while ECVaR gives the highest profit at the end of the time horizon in both policies.

[1]  Andres Weintraub,et al.  A Forest Management Planning Model Integrating Silvicultural and Transportation Activities , 1976 .

[2]  A. F. Marques,et al.  An enterprise architecture approach to forest management support systems design: an application to pulpwood supply management in Portugal , 2011, European Journal of Forest Research.

[3]  Jocelyne Bion-Nadal,et al.  Dynamic risk measures: Time consistency and risk measures from BMO martingales , 2008, Finance Stochastics.

[4]  Melvyn Sim,et al.  The Price of Robustness , 2004, Oper. Res..

[5]  Bernardo K. Pagnoncelli,et al.  The optimal harvesting problem under risk aversion ∗ , 2012 .

[6]  David L. Woodruff,et al.  Stochastic optimization models in forest planning: a progressive hedging solution approach , 2015, Ann. Oper. Res..

[7]  Andrzej Ruszczynski,et al.  Risk-averse dynamic programming for Markov decision processes , 2010, Math. Program..

[8]  Laureano F. Escudero,et al.  BFC, A branch-and-fix coordination algorithmic framework for solving some types of stochastic pure and mixed 0-1 programs , 2003, Eur. J. Oper. Res..

[9]  B. WETSt,et al.  STOCHASTIC PROGRAMS WITH FIXED RECOURSE : THE EQUIVALENT DETERMINISTIC PROGRAM , 2022 .

[10]  Laureano F. Escudero,et al.  An SDP approach for multiperiod mixed 0-1 linear programming models with stochastic dominance constraints for risk management , 2015, Comput. Oper. Res..

[11]  Masoumeh Kazemi Zanjani,et al.  Forest harvesting planning under uncertainty: a cardinality-constrained approach , 2017, Int. J. Prod. Res..

[12]  Werner Römisch,et al.  Scenario tree reduction for multistage stochastic programs , 2009, Comput. Manag. Sci..

[13]  Andrzej Ruszczynski,et al.  Scenario decomposition of risk-averse multistage stochastic programming problems , 2012, Ann. Oper. Res..

[14]  R. Wets Stochastic Programs with Fixed Recourse: The Equivalent Deterministic Program , 1974 .

[15]  Claudia A. Sagastizábal,et al.  Risk-averse feasible policies for large-scale multistage stochastic linear programs , 2013, Math. Program..

[16]  Felipe Caro,et al.  Optimizing Long-Term Production Plans in Underground and Open-Pit Copper Mines , 2010, Oper. Res..

[17]  Monique Guignard-Spielberg,et al.  Model tightening for integrated timber harvest and transportation planning , 1998, Eur. J. Oper. Res..

[18]  Laureano F. Escudero,et al.  On the time-consistent stochastic dominance risk averse measure for tactical supply chain planning under uncertainty , 2017, Comput. Oper. Res..

[19]  Xu Andy Sun,et al.  Nested Decomposition of Multistage Stochastic Integer Programs with Binary State Variables , 2016 .

[20]  K. Eyvindson,et al.  Determining the appropriate timing of the next forest inventory: incorporating forest owner risk preferences and the uncertainty of forest data quality , 2017, Annals of Forest Science.

[21]  Werner Römisch,et al.  Quasi-Monte Carlo methods for linear two-stage stochastic programming problems , 2015, Math. Program..

[22]  L. Escudero,et al.  The value of the stochastic solution in multistage problems , 2007 .

[23]  Laureano F. Escudero,et al.  Scenario cluster Lagrangean decomposition for risk averse in multistage stochastic optimization , 2017, Comput. Oper. Res..

[24]  Mikael Rönnqvist,et al.  Optimization Models for Forest Road Upgrade Planning , 2007, J. Math. Model. Algorithms.

[25]  Alejandro Jofré,et al.  Linking strategic and tactical forestry planning decisions , 2000, Ann. Oper. Res..

[26]  Rüdiger Schultz,et al.  Conditional Value-at-Risk in Stochastic Programs with Mixed-Integer Recourse , 2006, Math. Program..

[27]  G. Pflug,et al.  Value-at-Risk in Portfolio Optimization: Properties and Computational Approach ⁄ , 2005 .

[28]  Philippe Artzner,et al.  Coherent Measures of Risk , 1999 .

[29]  Laureano F. Escudero,et al.  Medium range optimization of copper extraction planning under uncertainty in future copper prices , 2014, Eur. J. Oper. Res..

[30]  Monique Guignard-Spielberg,et al.  Lagrangean decomposition: A model yielding stronger lagrangean bounds , 1987, Math. Program..

[31]  David P. Morton,et al.  Evaluating policies in risk-averse multi-stage stochastic programming , 2014, Mathematical Programming.

[32]  Vitor L. de Matos,et al.  Dynamic sampling algorithms for multi-stage stochastic programs with risk aversion , 2012, Eur. J. Oper. Res..

[33]  Mikael Rönnqvist,et al.  Optimization in forestry , 2003, Math. Program..

[34]  Alexandre Street,et al.  Time consistency and risk averse dynamic decision models: Definition, interpretation and practical consequences , 2014, Eur. J. Oper. Res..

[35]  Laureano F. Escudero,et al.  On air traffic flow management with rerouting. Part II: Stochastic case , 2012, Eur. J. Oper. Res..

[36]  Unai Aldasoro,et al.  On parallelization of a stochastic dynamic programming algorithm for solving large-scale mixed 0–1 problems under uncertainty , 2015, TOP.

[37]  Jean-Philippe Chancelier,et al.  Dynamic consistency for stochastic optimal control problems , 2012, Ann. Oper. Res..

[38]  Monique Guignard-Spielberg,et al.  A Problem of Forest Harvesting and Road Building Solved Through Model Strengthening and Lagrangean Relaxation , 2003, Oper. Res..

[39]  Luis Cadarso,et al.  Rapid transit network design: considering recovery robustness and risk aversion measures , 2017 .

[40]  David Heath,et al.  Coherent multiperiod risk adjusted values and Bellman’s principle , 2007, Ann. Oper. Res..

[41]  José Boaventura-Cunha,et al.  Overview of MPC applications in supply chains: Potential use and benefits in the management of forest-based supply chains , 2015 .

[42]  Ljusk Ola Eriksson,et al.  Review. Assessing uncertainty and risk in forest planning and decision support systems: review of classical methods and introduction of new approaches , 2013 .

[43]  John R. Birge,et al.  Introduction to Stochastic Programming , 1997 .

[44]  Laureano F. Escudero,et al.  Forestry management under uncertainty , 2011, Ann. Oper. Res..

[45]  Bernardo K. Pagnoncelli,et al.  The optimal harvesting problem under price uncertainty , 2014, Ann. Oper. Res..

[46]  R. Rockafellar,et al.  Optimization of conditional value-at risk , 2000 .

[47]  Bernardo K. Pagnoncelli,et al.  The optimal harvesting problem under price uncertainty: the risk averse case , 2017, Ann. Oper. Res..

[48]  Georg Ch. Pflug,et al.  Time-Consistent Decisions and Temporal Decomposition of Coherent Risk Functionals , 2016, Math. Oper. Res..

[49]  Victor Alejandro,et al.  Integrating Road Building Decisions into Harvest Scheduling Models , 2010 .

[50]  Georg Ch. Pflug,et al.  Dynamic generation of scenario trees , 2015, Computational Optimization and Applications.

[51]  Alexander Shapiro,et al.  On a time consistency concept in risk averse multistage stochastic programming , 2009, Oper. Res. Lett..

[52]  Bernardo K. Pagnoncelli,et al.  Risk aversion in multistage stochastic programming: A modeling and algorithmic perspective , 2016, Eur. J. Oper. Res..

[53]  Luc LeBel,et al.  Multi-commodity supply network planning in the forest supply chain , 2009, Eur. J. Oper. Res..

[54]  Alexander Shapiro,et al.  Lectures on Stochastic Programming: Modeling and Theory , 2009 .

[55]  Bernardo K. Pagnoncelli,et al.  The optimal harvesting problem with price uncertainty , 2011 .

[56]  Miguel Constantino,et al.  Branch-and-cut for the forest harvest scheduling subject to clearcut and core area constraints , 2018, Eur. J. Oper. Res..

[57]  Erlon Cristian Finardi,et al.  On Solving Multistage Stochastic Programs with Coherent Risk Measures , 2013, Oper. Res..

[58]  Georg Ch. Pflug,et al.  Measuring Risk for Income Streams , 2005, Comput. Optim. Appl..

[59]  Mikael Rönnqvist,et al.  Supply chain optimization in the pulp mill industry--IP models, column generation and novel constraint branches , 2004, Eur. J. Oper. Res..

[60]  R. Tyrrell Rockafellar,et al.  Scenarios and Policy Aggregation in Optimization Under Uncertainty , 1991, Math. Oper. Res..

[61]  Mikael Rönnqvist,et al.  Using robust optimization for distribution and inventory planning for a large pulp producer , 2014, Comput. Oper. Res..

[62]  Ljusk Ola Eriksson,et al.  Review. Assessing uncertainty and risk in forest planning and decision support systems: review of classical methods and introduction of new approaches , 2013 .

[63]  Roger J.-B. Wets,et al.  Building a stochastic programming model from scratch: a harvesting management example , 2016 .

[64]  Michel De Lara,et al.  Building up time-consistency for risk measures and dynamic optimization , 2016, Eur. J. Oper. Res..

[65]  G. Pflug Some Remarks on the Value-at-Risk and the Conditional Value-at-Risk , 2000 .