Bounding Global Aerosol Radiative Forcing of Climate Change

Aerosols interact with radiation and clouds. Substantial progress made over the past 40 years in observing, understanding, and modeling these processes helped quantify the imbalance in the Earth's radiation budget caused by anthropogenic aerosols, called aerosol radiative forcing, but uncertainties remain large. This review provides a new range of aerosol radiative forcing over the industrial era based on multiple, traceable, and arguable lines of evidence, including modeling approaches, theoretical considerations, and observations. Improved understanding of aerosol absorption and the causes of trends in surface radiative fluxes constrain the forcing from aerosol‐radiation interactions. A robust theoretical foundation and convincing evidence constrain the forcing caused by aerosol‐driven increases in liquid cloud droplet number concentration. However, the influence of anthropogenic aerosols on cloud liquid water content and cloud fraction is less clear, and the influence on mixed‐phase and ice clouds remains poorly constrained. Observed changes in surface temperature and radiative fluxes provide additional constraints. These multiple lines of evidence lead to a 68% confidence interval for the total aerosol effective radiative forcing of ‐1.6 to ‐0.6 W m−2, or ‐2.0 to ‐0.4 W m−2 with a 90% likelihood. Those intervals are of similar width to the last Intergovernmental Panel on Climate Change assessment but shifted toward more negative values. The uncertainty will narrow in the future by continuing to critically combine multiple lines of evidence, especially those addressing industrial‐era changes in aerosol sources and aerosol effects on liquid cloud amount and on ice clouds.

[1]  M. Dubey,et al.  Aerosol indirect effect over the Indian Ocean , 2006 .

[2]  M. Chin,et al.  Modelled black carbon radiative forcing and atmospheric lifetime in AeroCom Phase II constrained by aircraft observations , 2014 .

[3]  Xiaohong Liu,et al.  Impact of aerosols on ice crystal size , 2018, Atmospheric chemistry and physics.

[4]  Reassessment of pre-industrial fire emissions strongly affects anthropogenic aerosol forcing , 2018, Nature Communications.

[5]  K. Carslaw,et al.  Aerosols in the Pre-industrial Atmosphere , 2017, Current Climate Change Reports.

[6]  Johannes Quaas,et al.  Interpreting the cloud cover – aerosol optical depth relationship found in satellite data using a general circulation model , 2009 .

[7]  R. Pincus,et al.  Committed warming inferred from observations , 2017 .

[8]  M. Razinger,et al.  Aerosol analysis and forecast in the European Centre for Medium‐Range Weather Forecasts Integrated Forecast System: 2. Data assimilation , 2009 .

[9]  D. Sexton,et al.  Ensembles of Global Climate Model Variants Designed for the Quantification and Constraint of Uncertainty in Aerosols and Their Radiative Forcing , 2019, Journal of Advances in Modeling Earth Systems.

[10]  D. Koch,et al.  Black carbon absorption effects on cloud cover, review and synthesis , 2010 .

[11]  G. Feingold,et al.  Stratocumulus to cumulus transition in the presence of elevated smoke layers , 2015 .

[12]  J. Conover Anomalous Cloud Lines , 1966 .

[13]  L. Remer,et al.  Aerosol-induced changes of convective cloud anvils produce strong climate warming , 2010 .

[14]  G. Feingold,et al.  The scale problem in quantifying aerosol indirect effects , 2011 .

[15]  Susan Thomas,et al.  CERES Top-of-Atmosphere Earth Radiation Budget Climate Data Record: Accounting for in-Orbit Changes in Instrument Calibration , 2016, Remote. Sens..

[16]  Peter J. Webster,et al.  The albedo of Earth , 2015 .

[17]  Antony D. Clarke,et al.  Exploiting simultaneous observational constraints on mass and absorption to estimate the global direct radiative forcing of black carbon and brown carbon , 2014 .

[18]  Steven Platnick,et al.  The MODIS Cloud Optical and Microphysical Products: Collection 6 Updates and Examples From Terra and Aqua , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[19]  Piers M. Forster,et al.  Inference of Climate Sensitivity from Analysis of Earth's Energy Budget , 2016 .

[20]  B. DeAngelo,et al.  Bounding the role of black carbon in the climate system: A scientific assessment , 2013 .

[21]  J. Ström,et al.  In situ measurements of enhanced crystal number densities in cirrus clouds caused by aircraft exhaust , 1998 .

[22]  P. Chuang,et al.  Can aerosol decrease cloud lifetime? , 2009 .

[23]  S. Twomey The Influence of Pollution on the Shortwave Albedo of Clouds , 1977 .

[24]  Philip Stier,et al.  Investigating relationships between aerosol optical depth and cloud fraction using satellite, aerosol reanalysis and general circulation model data , 2012 .

[25]  J. Lamarque,et al.  Aerosol indirect effects – general circulation model intercomparison and evaluation with satellite data , 2009 .

[26]  A. Bodas‐Salcedo,et al.  Dreary state of precipitation in global models , 2010 .

[27]  Dongmin Lee,et al.  Radiative effects of global MODIS cloud regimes , 2016, Journal of geophysical research. Atmospheres : JGR.

[28]  Joyce E. Penner,et al.  Aircraft soot indirect effect on large‐scale cirrus clouds: Is the indirect forcing by aircraft soot positive or negative? , 2013 .

[29]  P. Stier,et al.  Links between satellite-retrieved aerosol and precipitation , 2014 .

[30]  B. Stevens Reply to “Comments on ‘Rethinking the Lower Bound on Aerosol Radiative Forcing’” , 2015, Journal of Climate.

[31]  A. Voulgarakis,et al.  Similar spatial patterns of global climate response to aerosols from different regions , 2018, npj Climate and Atmospheric Science.

[32]  Y. Kaufman,et al.  Aerosol invigoration and restructuring of Atlantic convective clouds , 2005 .

[33]  David M. Winker,et al.  The global 3-D distribution of tropospheric aerosols as characterized by CALIOP , 2012 .

[34]  Graeme L. Stephens,et al.  Aerosol indirect effect dictated by liquid clouds , 2016 .

[35]  M. Lebsock,et al.  Aerosol effect on the warm rain formation process: Satellite observations and modeling , 2013 .

[36]  Axel Lauer,et al.  © Author(s) 2006. This work is licensed under a Creative Commons License. Atmospheric Chemistry and Physics Analysis and quantification of the diversities of aerosol life cycles , 2022 .

[37]  E. Méeszáros Cloud condensation nuclei , 1988 .

[38]  Alexander Smirnov,et al.  Cloud-Screening and Quality Control Algorithms for the AERONET Database , 2000 .

[39]  J. Seinfeld,et al.  Satellite-based estimate of global aerosol-cloud radiative forcing by marine warm clouds , 2014 .

[40]  Richard Neale,et al.  Toward a Minimal Representation of Aerosols in Climate Models: Description and Evaluation in the Community Atmosphere Model CAM5 , 2012 .

[41]  J. Mülmenstädt,et al.  Multi-model simulations of aerosol and ozone radiative forcing due to anthropogenic emission changes during the period 1990-2015 , 2017 .

[42]  Christian D. Kummerow,et al.  Multisensor satellite observations of aerosol effects on warm clouds , 2008 .

[43]  Glen Lesins,et al.  Stronger Constraints on the Anthropogenic Indirect Aerosol Effect , 2002, Science.

[44]  H. Köhler The nucleus in and the growth of hygroscopic droplets , 1936 .

[45]  P. Field,et al.  Predicting decadal trends in cloud droplet number concentration using reanalysis and satellite data , 2017 .

[46]  Ilan Koren,et al.  Measurement of the Effect of Amazon Smoke on Inhibition of Cloud Formation , 2004, Science.

[47]  A. Kirkevåg,et al.  Modeling of the Wegener–Bergeron–Findeisen process—implications for aerosol indirect effects , 2008 .

[48]  G. Feingold,et al.  A long-term study of aerosol–cloud interactions and their radiative effectat the Southern Great Plains using ground-based measurements , 2016 .

[49]  J. Seinfeld,et al.  Evolution of nanoparticle size and mixing state near the point of emission , 2004 .

[50]  D. Rosenfeld Aerosol-Cloud Interactions Control of Earth Radiation and Latent Heat Release Budgets , 2007 .

[51]  M. Lebsock,et al.  Precipitation driving of droplet concentration variability in marine low clouds , 2012 .

[52]  S. Twomey Pollution and the Planetary Albedo , 1974 .

[53]  T. Andrews,et al.  Understanding the Rapid Precipitation Response to CO2 and Aerosol Forcing on a Regional Scale , 2016 .

[54]  M. Chin,et al.  Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations , 2012 .

[55]  Thomas F. Eck,et al.  A synthesis of single scattering albedo of biomass burning aerosol over southern Africa during SAFARI 2000 , 2007 .

[56]  J. Hansen,et al.  Efficacy of climate forcings , 2005 .

[57]  C. Bretherton,et al.  Cloud droplet sedimentation, entrainment efficiency, and subtropical stratocumulus albedo , 2007 .

[58]  P. Stier,et al.  Regime‐based analysis of aerosol‐cloud interactions , 2012 .

[59]  Soot, sulfate, dust and the climate — three ways through the fog , 2019, Nature.

[60]  Ulrike Lohmann,et al.  A parameterization of cirrus cloud formation: Heterogeneous freezing , 2003 .

[61]  Chuanfeng Zhao,et al.  Long-term variation of cloud droplet number concentrations from space-based Lidar , 2018, Remote Sensing of Environment.

[62]  C. Bretherton,et al.  Locally Enhanced Aerosols Over a Shipping Lane Produce Convective Invigoration but Weak Overall Indirect Effects in Cloud‐Resolving Simulations , 2018, Geophysical Research Letters.

[63]  J. Pelon,et al.  CALIPSO (IIR-CALIOP) Retrievals of Cirrus Cloud Ice Particle Concentrations. , 2018, Atmospheric chemistry and physics.

[64]  J. Kay,et al.  Timescale analysis of aerosol sensitivity during homogeneous freezing and implications for upper tropospheric water vapor budgets , 2008 .

[65]  R. Pincus,et al.  Effect of precipitation on the albedo susceptibility of clouds in the marine boundary layer , 1994, Nature.

[66]  Karl E. Taylor,et al.  An overview of CMIP5 and the experiment design , 2012 .

[67]  Olivier Boucher,et al.  The sulfate‐CCN‐cloud albedo effect , 1995 .

[68]  M. Lebsock,et al.  On the precipitation susceptibility of clouds to aerosol perturbations , 2009 .

[69]  C. Bretherton,et al.  Improving our fundamental understanding of the role of aerosol−cloud interactions in the climate system , 2016, Proceedings of the National Academy of Sciences.

[70]  Olivier Blarquez,et al.  Reconstructions of biomass burning from sediment-charcoal records to improve data–model comparisons , 2015 .

[71]  D. Tanré,et al.  Remote Sensing of Tropospheric Aerosols from Space: Past, Present, and Future. , 1999 .

[72]  J. Penner,et al.  Satellite methods underestimate indirect climate forcing by aerosols , 2011, Proceedings of the National Academy of Sciences.

[73]  V. Ramaswamy,et al.  Microphysical and radiative evolution of aerosol plumes over the tropical North Atlantic Ocean , 2002 .

[74]  G. Hegerl,et al.  Beyond equilibrium climate sensitivity , 2017 .

[75]  Maria Cristina Facchini,et al.  The effect of physical and chemical aerosol properties on warm cloud droplet activation , 2005 .

[76]  J. Seinfeld,et al.  Ion-induced nucleation of pure biogenic particles , 2016, Nature.

[77]  T. Nakajima,et al.  Aerosol effects on cloud water amounts were successfully simulated by a global cloud-system resolving model , 2018, Nature Communications.

[78]  S. Warren,et al.  A Model for the Spectral Albedo of Snow. II: Snow Containing Atmospheric Aerosols , 1980 .

[79]  Michael Schulz,et al.  Radiative forcing by aerosols as derived from the AeroCom present-day and pre-industrial simulations , 2006 .

[80]  Qingyuan Han,et al.  Three Different Behaviors of Liquid Water Path of Water Clouds in Aerosol-Cloud Interactions , 2002 .

[81]  S. Twomey,et al.  Determining the Susceptibility of Cloud Albedo to Changes in Droplet Concentration with the Advanced Very High Resolution Radiometer , 1994 .

[82]  P. Zuidema,et al.  The first aerosol indirect effect quantified through airborne remote sensing during VOCALS-REx , 2012 .

[83]  M. Kirkpatrick,et al.  The impact of humidity above stratiform clouds on indirect aerosol climate forcing , 2004, Nature.

[84]  S. Kinne Aerosol radiative effects with MACv2 , 2019, Atmospheric Chemistry and Physics.

[85]  D. Hartmann,et al.  Observations of a substantial cloud‐aerosol indirect effect during the 2014–2015 Bárðarbunga‐Veiðivötn fissure eruption in Iceland , 2015 .

[86]  Veerabhadran Ramanathan,et al.  Greenhouse Effect Due to Chlorofluorocarbons: Climatic Implications , 1975, Science.

[87]  P. Adams,et al.  Evaluation of the global aerosol microphysical ModelE2-TOMAS model against satellite and ground-based observations , 2015 .

[88]  S. Ghan,et al.  Constraining the instantaneous aerosol influence on cloud albedo , 2017, Proceedings of the National Academy of Sciences.

[89]  B. Stevens,et al.  Untangling aerosol effects on clouds and precipitation in a buffered system , 2009, Nature.

[90]  J. Haywood Atmospheric aerosols and their role in climate change , 2021, Climate Change.

[91]  J. Mülmenstädt,et al.  Surprising similarities in model and observational aerosol radiative forcing estimates , 2019, Atmospheric chemistry and physics.

[92]  A. Schmidt,et al.  Aerosol midlatitude cyclone indirect effects in observations and high-resolution simulations , 2018 .

[93]  T. Nakajima,et al.  An Evaluation of the Shortwave Direct Aerosol Radiative Forcing Using CALIOP and MODIS Observations , 2018 .

[94]  T. Mitchell,et al.  Lightning enhancement over major oceanic shipping lanes , 2017 .

[95]  G. Mann,et al.  Natural aerosol direct and indirect radiative effects , 2013 .

[96]  T. Nakajima,et al.  What Do We Know about Large-scale Changes of Aerosols, Clouds, and the Radiation Budget? , 2009 .

[97]  T. Andrews,et al.  Quantifying the Importance of Rapid Adjustments for Global Precipitation Changes , 2018, Geophysical research letters.

[98]  K. Taylor,et al.  Quantifying components of aerosol‐cloud‐radiation interactions in climate models , 2014 .

[99]  A. Slingo,et al.  Clouds in the Perturbed Climate System , 2010 .

[100]  M. Andreae,et al.  Uncertainty in Climate Change Caused by Aerosols , 1996, Science.

[101]  A. Smirnov,et al.  AERONET-a federated instrument network and data archive for aerosol Characterization , 1998 .

[102]  J. Bacmeister,et al.  Development of two-moment cloud microphysics for liquid and ice within the NASA Goddard Earth Observing System Model (GEOS-5) , 2013 .

[103]  J. Mülmenstädt,et al.  Constraining the aerosol influence on cloud liquid water path , 2018, Atmospheric Chemistry and Physics.

[104]  M. Christensen,et al.  Weak average liquid-cloud-water response to anthropogenic aerosols , 2019, Nature.

[105]  P. Zuidema,et al.  The Convolution of Dynamics and Moisture with the Presence of Shortwave Absorbing Aerosols over the Southeast Atlantic , 2015 .

[106]  T. Stanelle,et al.  Anthropogenically induced changes in twentieth century mineral dust burden and the associated impact on radiative forcing , 2014 .

[107]  S. Emori,et al.  Simulation of climate response to aerosol direct and indirect effects with aerosol transport‐radiation model , 2005 .

[108]  N. Bellouin,et al.  Constraining the aerosol influence on cloud fraction , 2016 .

[109]  Jean-Christophe Golaz,et al.  Cloud tuning in a coupled climate model: Impact on 20th century warming , 2013 .

[110]  U. Lohmann,et al.  Unveiling aerosol–cloud interactions – Part 2: Minimising the effects of aerosol swelling and wet scavenging in ECHAM6-HAM2 for comparison to satellite data , 2017 .

[111]  B. Stevens,et al.  Numerical simulations of stratocumulus processing of cloud condensation nuclei through , 1996 .

[112]  U. Lohmann,et al.  Ice nucleation abilities of soot particles determined with the Horizontal Ice Nucleation Chamber , 2018, Atmospheric Chemistry and Physics.

[113]  Teruyuki Nakajima,et al.  A possible correlation between satellite‐derived cloud and aerosol microphysical parameters , 2001 .

[114]  U. Lohmann,et al.  A glaciation indirect aerosol effect caused by soot aerosols , 2002 .

[115]  S. Twomey,et al.  The nuclei of natural cloud formation part II: The supersaturation in natural clouds and the variation of cloud droplet concentration , 1959 .

[116]  Olivier Boucher,et al.  Adjustments in the Forcing-Feedback Framework for Understanding Climate Change , 2014 .

[117]  Jean-Pierre Blanchet,et al.  Effects of arctic sulphuric acid aerosols on wintertime low-level atmospheric ice crystals, humidity and temperature at Alert, Nunavut , 2005 .

[118]  A. Kirkevåg,et al.  Intercomparison of models representing direct shortwave radiative forcing by sulfate aerosols , 1998 .

[119]  D. P. Schanen,et al.  Higher-Order Turbulence Closure and Its Impact on Climate Simulations in the Community Atmosphere Model , 2013 .

[120]  G. Thompson,et al.  Uncertainty from the choice of microphysics scheme in convection-permitting models significantly exceeds aerosol effects , 2017 .

[121]  A. Marshak,et al.  MODIS observations of enhanced clear sky reflectance near clouds , 2009 .

[122]  Stephen E. Schwartz,et al.  Direct shortwave forcing of climate by the anthropogenic sulfate aerosol: Sensitivity to particle size, composition, and relative humidity , 1995 .

[123]  N. Webb,et al.  Quantifying Anthropogenic Dust Emissions , 2018 .

[124]  S. Solomon,et al.  An observationally based energy balance for the Earth since 1950 , 2009 .

[125]  Jonathan P. Taylor,et al.  Effects of Aerosols on Cloud Albedo: Evaluation of Twomey's Parameterization of Cloud Susceptibility Using Measurements of Ship Tracks. , 2000 .

[126]  Ulrike Lohmann,et al.  Global anthropogenic aerosol effects on convective clouds in ECHAM5-HAM , 2007 .

[127]  P. Stier,et al.  Satellite observations of cloud regime development: the role of aerosol processes , 2013 .

[128]  Philip J. Rasch,et al.  Present-day climate forcing and response from black carbon in snow , 2006 .

[129]  V. Ramaswamy,et al.  Reply [to “Comments on ‘A limited‐area‐model case study of the effects of sub‐grid scale variations in relative humidity and cloud upon the direct radiative forcing of sulfate aerosol’”] , 1998 .

[130]  K. Froyd,et al.  Deactivation of ice nuclei due to atmospherically relevant surface coatings , 2009 .

[131]  M. Chin,et al.  Evaluation of the aerosol vertical distribution in global aerosol models through comparison against CALIOP measurements: AeroCom phase II results , 2016, Journal of geophysical research. Atmospheres : JGR.

[132]  Brian Zambri,et al.  Ship track observations of a reduced shortwave aerosol indirect effect in mixed‐phase clouds , 2014 .

[133]  A. Gettelman Putting the clouds back in aerosol-cloud interactions , 2015 .

[134]  L. Remer,et al.  Observational evidence of aerosol enhancement of lightning activity and convective invigoration , 2011 .

[135]  C. Bretherton,et al.  Clouds and Aerosols , 2013 .

[136]  O. Boucher,et al.  Water vapour affects both rain and aerosol optical depth , 2012, Nature Geoscience.

[137]  G. Mace,et al.  Effects of varying aerosol regimes on low‐level Arctic stratus , 2004 .

[138]  L. Schüller,et al.  Radiative Properties of Boundary Layer Clouds: Droplet Effective Radius versus Number Concentration , 2000 .

[139]  Kentaroh Suzuki,et al.  The Impact of Process‐Based Warm Rain Constraints on the Aerosol Indirect Effect , 2018, Geophysical Research Letters.

[140]  P. Phillips,et al.  Lethargic Response to Aerosol Emissions in Current Climate Models , 2018, Geophysical Research Letters.

[141]  T. Storelvmo,et al.  Spaceborne lidar observations of the ice‐nucleating potential of dust, polluted dust, and smoke aerosols in mixed‐phase clouds , 2014 .

[142]  Jun Liu,et al.  Spatial and temporal evolution of natural and anthropogenic dust events over northern China , 2018, Scientific Reports.

[143]  B. Soden,et al.  Hemispheric climate shifts driven by anthropogenic aerosol–cloud interactions , 2017 .

[144]  Ramaswamy,et al.  Tropospheric Aerosol Climate Forcing in Clear-Sky Satellite Observations over the Oceans. , 1999, Science.

[145]  M. Holden,et al.  Climate sensitivity estimates – sensitivity to radiative forcing time series and observational data , 2018, Earth System Dynamics.

[146]  N. Mahowald,et al.  A less dusty future? , 2003 .

[147]  J. Penner,et al.  Decrease in radiative forcing by organic aerosol nucleation, climate, and land use change , 2019, Nature Communications.

[148]  J. Mülmenstädt,et al.  Assessment of simulated aerosol effective radiative forcings in the terrestrial spectrum , 2017 .

[149]  G. Meehl,et al.  OVERVIEW OF THE COUPLED MODEL INTERCOMPARISON PROJECT , 2005 .

[150]  J. Seinfeld,et al.  Marine stratocumulus aerosol-cloud relationships in the MASE-II experiment: Precipitation susceptibility in eastern Pacific marine stratocumulus , 2009 .

[151]  J. Hansen,et al.  Radiative forcing and climate response , 1997 .

[152]  U. Lohmann,et al.  Anthropogenic aerosol forcing – insights from multiple estimates from aerosol-climate models with reduced complexity , 2019, Atmospheric Chemistry and Physics.

[153]  U. Lohmann,et al.  First interactive simulations of cirrus clouds formed by homogeneous freezing in the ECHAM general circulation model , 2002 .

[154]  J. Wilson,et al.  Emission-Induced Nonlinearities in the Global Aerosol System: Results from the ECHAM5-HAM Aerosol-Climate Model , 2006 .

[155]  H. Chepfer,et al.  Observational constraint on cloud susceptibility weakened by aerosol retrieval limitations , 2018, Nature Communications.

[156]  T. Andrews,et al.  Rapid Adjustments Cause Weak Surface Temperature Response to Increased Black Carbon Concentrations , 2017, Journal of geophysical research. Atmospheres : JGR.

[157]  Zhanqing Li,et al.  Microphysical effects determine macrophysical response for aerosol impacts on deep convective clouds , 2013, Proceedings of the National Academy of Sciences.

[158]  J. Mülmenstädt,et al.  Comment on ``Rethinking the Lower Bound on Aerosol Radiative Forcing'' , 2017 .

[159]  D. Easterling,et al.  Observations: Atmosphere and surface , 2013 .

[160]  G. Mann,et al.  Strong constraints on aerosol–cloud interactions from volcanic eruptions , 2017, Nature.

[161]  G. Feingold,et al.  Large-Eddy Simulations of Trade Wind Cumuli: Investigation of Aerosol Indirect Effects , 2006 .

[162]  G. McFarquhar,et al.  Satellite‐observed relationships between aerosol and trade‐wind cumulus cloud properties over the Indian Ocean , 2011 .

[163]  B. Albrecht Aerosols, Cloud Microphysics, and Fractional Cloudiness , 1989, Science.

[164]  Peter V. Hobbs,et al.  Cloud Condensation Nuclei from Industrial Sources and Their Apparent Influence on Precipitation in Washington State , 1970 .

[165]  O. Boucher,et al.  Spatial Representativeness Error in the Ground‐Level Observation Networks for Black Carbon Radiation Absorption , 2018, Geophysical research letters.

[166]  A. Jones,et al.  Comments on “Rethinking the Lower Bound on Aerosol Radiative Forcing” , 2018, Journal of Climate.

[167]  Jianping Huang,et al.  Detection of anthropogenic dust using CALIPSO lidar measurements , 2015 .

[168]  Ulrike Lohmann,et al.  Can the direct and semi‐direct aerosol effect compete with the indirect effect on a global scale? , 2001 .

[169]  P. Formenti,et al.  Radiative properties and direct radiative effect of Saharan dust measured by the C-130 aircraft during SHADE: 1. Solar spectrum , 2003 .

[170]  T. Stocker,et al.  Climate Change 2013: The Physical Science Basis. An overview of the Working Group 1 contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). , 2013 .

[171]  J. H. Ludwig,et al.  Climate Modification by Atmospheric Aerosols , 1967, Science.

[172]  S. Schwartz Unrealized Global Temperature Increase: Implications of Current Uncertainties , 2018 .

[173]  Shingo Watanabe,et al.  The Geoengineering Model Intercomparison Project Phase 6 (GeoMIP6): simulation design and preliminary results , 2015 .

[174]  L. G. Tilstra,et al.  Aerosol direct radiative effect of smoke over clouds over the southeast Atlantic Ocean from 2006 to 2009 , 2014 .

[175]  Johannes W. Kaiser,et al.  Historic global biomass burning emissions for CMIP6 (BB4CMIP) based on merging satellite observations with proxies and fire models (1750-2015) , 2017 .

[176]  Daniel Rosenfeld,et al.  Cloud Microphysical Properties, Processes, and Rainfall Estimation Opportunities , 2003 .

[177]  Chang-Hoi Ho,et al.  Space observations of cold-cloud phase change , 2010, Proceedings of the National Academy of Sciences.

[178]  J. Warner,et al.  Comparison of Measurements of Cloud Droplets and Cloud Nuclei , 1967 .

[179]  M. Shupe,et al.  Observed aerosol suppression of cloud ice in low-level Arctic mixed-phase clouds , 2018, Atmospheric Chemistry and Physics.

[180]  Roy G. Grainger,et al.  Automatic detection of ship tracks in ATSR-2 satellite imagery , 2009 .

[181]  K. Powell,et al.  Estimations of global shortwave direct aerosol radiative effects above opaque water clouds using a combination of A-Train satellite sensors , 2018, Atmospheric Chemistry and Physics.

[182]  S. Ghan,et al.  Aerosol optical depth increase in partly cloudy conditions , 2012 .

[183]  Paul Ginoux,et al.  Identification of anthropogenic and natural dust sources using Moderate Resolution Imaging Spectroradiometer (MODIS) Deep Blue level 2 data , 2010 .

[184]  Reto Knutti,et al.  Understanding the drivers of marine liquid-water cloud occurrence and properties with global observations using neural networks , 2017 .

[185]  P. Formenti,et al.  Smoke and Clouds above the Southeast Atlantic: Upcoming Field Campaigns Probe Absorbing Aerosol’s Impact on Climate , 2016 .

[186]  G. Feingold,et al.  Analysis of albedo versus cloud fraction relationships in liquid water clouds using heuristic models and large eddy simulation , 2017 .

[187]  O. Boucher,et al.  Satellite-based estimate of the direct and indirect aerosol climate forcing , 2008 .

[188]  Melanie A. Wetzel,et al.  Evaluation of the aerosol indirect effect in marine stratocumulus clouds : droplet number, size, liquid water path, and radiative impact , 2005 .

[189]  Jessica R. Meyer,et al.  A microphysics guide to cirrus clouds – Part 1: Cirrus types , 2015 .

[190]  L. Lee,et al.  The importance of comprehensive parameter sampling and multiple observations for robust constraint of aerosol radiative forcing , 2018, Atmospheric Chemistry and Physics.

[191]  J. Hansen,et al.  Light scattering in planetary atmospheres , 1974 .

[192]  P. Stier,et al.  Cloud fraction mediates the aerosol optical depth‐cloud top height relationship , 2014 .

[193]  K. Shine Radiative Forcing of Climate Change , 2000 .

[194]  Reto Knutti,et al.  Constraints on radiative forcing and future climate change from observations and climate model ensembles , 2002, Nature.

[195]  L. Costantino Analysis of Aerosol-Cloud Interaction from Space , 2012 .

[196]  U. Lohmann,et al.  Impact of the representation of marine stratocumulus clouds on the anthropogenic aerosol effect , 2014 .

[197]  Olivier Boucher,et al.  Declining uncertainty in transient climate response as CO2 forcing dominates future climate change , 2015 .

[198]  G. Mann,et al.  Impact of the modal aerosol scheme GLOMAP-mode on aerosol forcing in the Hadley Centre Global Environmental Model , 2012 .

[199]  Benjamin T. Johnson The Semi-Direct Aerosol Effect , 2003 .

[200]  U. Lohmann Anthropogenic Aerosol Influences on Mixed-Phase Clouds , 2017, Current Climate Change Reports.

[201]  J. Mülmenstädt,et al.  The Radiative Forcing of Aerosol–Cloud Interactions in Liquid Clouds: Wrestling and Embracing Uncertainty , 2018, Current Climate Change Reports.

[202]  N. Mahowald Anthropocene changes in desert area: Sensitivity to climate model predictions , 2007 .

[203]  Robert Wood,et al.  Satellite-derived direct radiative effect of aerosols dependent on cloud cover , 2009 .

[204]  Nicolas Bellouin,et al.  A process-based evaluation of dust-emitting winds in the CMIP5 simulation of HadGEM2-ES , 2016, Climate Dynamics.

[205]  Kai Zhang,et al.  MAC‐v1: A new global aerosol climatology for climate studies , 2013 .

[206]  Ilan Koren,et al.  Smoke and Pollution Aerosol Effect on Cloud Cover , 2006, Science.

[207]  J. Coakley,et al.  Aerosols and Climate , 1974, Science.

[208]  U. Lohmann,et al.  Why cirrus cloud seeding cannot substantially cool the planet , 2016 .

[209]  J. Haywood,et al.  Solar radiative forcing by biomass burning aerosol particles during SAFARI 2000: A case study based on measured aerosol and cloud properties , 2003 .

[210]  M. Satoh,et al.  Toward reduction of the uncertainties in climate sensitivity due to cloud processes using a global non-hydrostatic atmospheric model , 2018, Progress in Earth and Planetary Science.

[211]  J. Riedi,et al.  Evidence for Changes in Arctic Cloud Phase Due to Long‐Range Pollution Transport , 2018, Geophysical Research Letters.

[212]  D. Winker,et al.  On the Limits of CALIOP for Constraining Modeled Free Tropospheric Aerosol , 2018, Geophysical Research Letters.

[213]  J. Quaas,et al.  Subgrid-scale variability in clear-sky relative humidity and forcing by aerosol – radiation interactions in an atmosphere model , 2017 .

[214]  Tianle Yuan,et al.  Microphysical, macrophysical and radiative signatures of volcanic aerosols in trade wind cumulus observed by the A-Train , 2011 .

[215]  David M. Winker,et al.  Intercomparison of column aerosol optical depths from CALIPSO and MODIS-Aqua , 2011 .

[216]  P. Pilewskie,et al.  Twomey effect observed from collocated microphysical and remote sensing measurements over shallow cumulus , 2014 .

[217]  M. R. Bloch A hypothesis for the change of ocean levels depending on the albedo of the polar ice caps , 1965 .

[218]  C. Flamant,et al.  An analysis of aeolian dust in climate models , 2014 .

[219]  R. Engelmann,et al.  Contrasting the impact of aerosols at northern and southern midlatitudes on heterogeneous ice formation , 2011 .

[220]  Q. Min,et al.  An assessment of aerosol-cloud interactions in marine stratus clouds based on surface remote sensing , 2009 .

[221]  Yongxiang Hu,et al.  Occurrence, liquid water content, and fraction of supercooled water clouds from combined CALIOP/IIR/MODIS measurements , 2010 .

[222]  Reto Knutti,et al.  Atmospheric science. Climate forcing by aerosol--a hazy picture. , 2003, Science.

[223]  Ipcc Global Warming of 1.5°C , 2022 .

[224]  Byung-Gon Kim,et al.  Effective radius of cloud droplets by ground‐based remote sensing: Relationship to aerosol , 2003 .

[225]  J. Delanoë,et al.  Ice crystal number concentration estimates from lidar–radar satellite remote sensing – Part 1: Method and evaluation , 2017, Atmospheric Chemistry and Physics.

[226]  R. Wood,et al.  The global aerosol‐cloud first indirect effect estimated using MODIS, MERRA, and AeroCom , 2017 .

[227]  J. Quaas,et al.  Subgrid-scale variability in clear-sky relative humidity and forcing by aerosol–radiation interactions in an atmosphere model , 2017, Atmospheric Chemistry and Physics.

[228]  Gunnar Myhre,et al.  How shorter black carbon lifetime alters its climate effect , 2014, Nature Communications.

[229]  G. Diskin,et al.  Ice nucleation and dehydration in the Tropical Tropopause Layer , 2013, Proceedings of the National Academy of Sciences.

[230]  Hanna Pawlowska,et al.  Cloud microphysical and radiative properties for parameterization and satellite monitoring of the indirect effect of aerosol on climate , 2003 .

[231]  M. Christensen,et al.  Unveiling aerosol–cloud interactions – Part 1: Cloud contamination in satellite products enhances the aerosol indirect forcing estimate , 2017 .

[232]  T. Storelvmo Aerosol Effects on Climate via Mixed-Phase and Ice Clouds , 2017 .

[233]  J. Haywood,et al.  The effect of anthropogenic sulfate and soot aerosol on the clear sky planetary radiation budget , 1995 .

[234]  M. Christensen,et al.  Microphysical and macrophysical responses of marine stratocumulus polluted by underlying ships: Evidence of cloud deepening , 2011 .

[235]  Corinna Hoose,et al.  Heterogeneous ice nucleation on atmospheric aerosols: a review of results from laboratory experiments , 2012 .

[236]  Martin Wild,et al.  Pollution trends over Europe constrain global aerosol forcing as simulated by climate models , 2014 .

[237]  J. Mülmenstädt,et al.  Separating radiative forcing by aerosol–cloud interactions and rapid cloud adjustments in the ECHAM–HAMMOZ aerosol–climate model using the method of partial radiative perturbations , 2019 .

[238]  Observational evidence for aerosol invigoration in shallow cumulus downstream of Mount Kilauea , 2016 .

[239]  J. Penner,et al.  Aerosols, their Direct and Indirect Effects , 2001 .

[240]  Chengxing Zhai,et al.  Relationship between aerosol and cloud fraction over Australia , 2011 .

[241]  C. O'Dowd,et al.  Flood or Drought: How Do Aerosols Affect Precipitation? , 2008, Science.

[242]  M. Krämer,et al.  Overview of Ice Nucleating Particles , 2017 .

[243]  Hartwig Deneke,et al.  Remote Sensing of Droplet Number Concentration in Warm Clouds: A Review of the Current State of Knowledge and Perspectives , 2018, Reviews of geophysics.

[244]  M. Gallagher,et al.  Parameterization of the cloud droplet sulfate relationship , 2004 .

[245]  Ø. Seland,et al.  Sensitivity to deliberate sea salt seeding of marine clouds – observations and model simulations , 2011 .

[246]  Qing Wang,et al.  Turbulence, Condensation, and Liquid Water Transport in Numerically Simulated Nonprecipitating Stratocumulus Clouds. , 2003 .

[247]  A. Arneth,et al.  Framing and Context , 2019 .

[248]  C. Bretherton,et al.  Ultraclean Layers and Optically Thin Clouds in the Stratocumulus-to-Cumulus Transition. Part I: Observations , 2018 .

[249]  D. Carati,et al.  Large-eddy simulation , 2000 .

[250]  U. Lohmann,et al.  Aerosol processing in mixed‐phase clouds in ECHAM5‐HAM: Model description and comparison to observations , 2008 .

[251]  J. Harrington,et al.  On smoke suppression of clouds in Amazonia , 2005 .

[252]  T. Ackerman,et al.  The efficacy of aerosol–cloud radiative perturbations from near-surface emissions in deep open-cell stratocumuli , 2018, Atmospheric Chemistry and Physics.

[253]  A. Pokrovsky,et al.  Simulating convective clouds with sustained supercooled liquid water down to −37.5°C using a spectral microphysics model , 2001 .

[254]  Johannes Hendricks,et al.  Dust ice nuclei effects on cirrus clouds , 2013 .

[255]  L. Oreopoulos,et al.  Radiative susceptibility of cloudy atmospheres to droplet number perturbations: 2. Global analysis from MODIS , 2008 .

[256]  J. Coakley,et al.  Climate Forcing by Anthropogenic Aerosols , 1992, Science.

[257]  David Neubauer,et al.  Impact of Saharan dust on North Atlantic marine stratocumulus clouds: importance of the semidirect effect , 2016 .

[258]  B. Samset,et al.  Comparison of AOD, AAOD and column single scattering albedo from AERONET retrievals and in situ profiling measurements , 2017 .

[259]  J. Penner,et al.  Anthropogenic Aerosol Indirect Effects in Cirrus Clouds , 2018, Journal of geophysical research. Atmospheres : JGR.

[260]  S. Gassó Satellite observations of the impact of weak volcanic activity on marine clouds , 2008 .

[261]  T. Eck,et al.  Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols , 1999 .

[262]  D. Rosenfeld,et al.  Satellite observations of ship emission induced transitions from broken to closed cell marine stratocumulus over large areas , 2012 .

[263]  B. Barkstrom,et al.  Clouds and the Earth's Radiant Energy System (CERES): An Earth Observing System Experiment , 1996 .

[264]  P. Field,et al.  Strong control of Southern Ocean cloud reflectivity by ice-nucleating particles , 2018, Proceedings of the National Academy of Sciences.

[265]  Johannes Quaas,et al.  Estimates of aerosol radiative forcing from the MACC re-analysis , 2012 .

[266]  I. Tegen,et al.  Relative importance of climate and land use in determining present and future global soil dust emission , 2004 .

[267]  J. Quaas The aerosol indirect effect , 2003 .

[268]  A.J.H. Visschedijk,et al.  General overview: European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI) - integrating aerosol research from nano to global scales , 2011 .

[269]  A. Weaver,et al.  Uncertainty in climate change , 2000, Nature.

[270]  O. Boucher,et al.  Why Does Aerosol Forcing Control Historical Global-Mean Surface Temperature Change in CMIP5 Models? , 2015 .

[271]  Manoj Joshi,et al.  An alternative to radiative forcing for estimating the relative importance of climate change mechanisms , 2003 .

[272]  Philip Stier,et al.  Limitations of passive remote sensing to constrain global cloud condensation nuclei , 2016 .

[273]  Ilan Koren,et al.  The effect of smoke, dust, and pollution aerosol on shallow cloud development over the Atlantic Ocean. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[274]  Dana E. Veron,et al.  First measurements of the Twomey indirect effect using ground‐based remote sensors , 2003 .

[275]  David M. Winker,et al.  Mesoscale Variations of Tropospheric Aerosols , 2003 .

[276]  G. Mann,et al.  Large contribution of natural aerosols to uncertainty in indirect forcing , 2013, Nature.

[277]  Ming Zhao,et al.  Global‐scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products , 2012 .

[278]  Andrew J. Heymsfield,et al.  Importance of snow to global precipitation , 2015 .

[279]  Reto Knutti,et al.  Climate Forcing by Aerosols--a Hazy Picture , 2003, Science.

[280]  Nicolas Bellouin,et al.  Precipitation, radiative forcing and global temperature change , 2010 .

[281]  N. Mahowald,et al.  Global and regional importance of the direct dust-climate feedback , 2018, Nature Communications.

[282]  R. Charlson,et al.  Quantification of Monthly Mean Regional-Scale Albedo of Marine Stratiform Clouds in Satellite Observations and GCMs , 2011 .

[283]  G. Mann,et al.  Emulation of a complex global aerosol model to quantify sensitivity to uncertain parameters , 2011 .

[284]  Joyce E. Penner,et al.  Possible influence of anthropogenic aerosols on cirrus clouds and anthropogenic forcing , 2008 .

[285]  Steven Dobbie,et al.  The importance of feldspar for ice nucleation by mineral dust in mixed-phase clouds , 2013, Nature.

[286]  Philip Stier,et al.  Constraints on aerosol processes in climate models from vertically-resolved aircraft observations of black carbon , 2013 .

[287]  David S. Lee,et al.  Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application , 2010 .

[288]  Andrew Gettelman,et al.  Climate impacts of ice nucleation , 2012 .

[289]  D. Koch,et al.  Black carbon semi-direct effects on cloud cover: review and synthesis , 2010 .

[290]  Norman G. Loeb,et al.  An Observational Study of the Relationship Between Cloud, Aerosol and Meteorology in Broken Low-Level Cloud Conditions , 2013 .

[291]  D. W. Johnson,et al.  The Measurement and Parameterization of Effective Radius of Droplets in Warm Stratocumulus Clouds , 1994 .

[292]  M. G. Morgan,et al.  Elicitation of Expert Judgments of Aerosol Forcing , 2006 .

[293]  G. Mann,et al.  An AeroCom Assessment of Black Carbon in Arctic Snow and Sea Ice , 2013 .

[294]  S. Bony,et al.  The ‘too few, too bright’ tropical low‐cloud problem in CMIP5 models , 2012 .

[295]  Eric M. Wilcox,et al.  Direct and semi-direct radiative forcing of smoke aerosols over clouds , 2011 .

[296]  David Crisp,et al.  Intercomparison of shortwave radiative transfer codes and measurements , 2005 .

[297]  J. Norris,et al.  Meteorological bias in satellite estimates of aerosol‐cloud relationships , 2007 .

[298]  J. Bühl,et al.  Strong aerosol-cloud interaction in altocumulus during updraft periods: lidar observations over central Europe , 2015 .

[299]  A. Betts,et al.  Contrasting convective regimes over the Amazon: Implications for cloud electrification , 2002 .

[300]  T. Takemura,et al.  The source of discrepancies in aerosol–cloud–precipitation interactions between GCM and A-Train retrievals , 2016 .

[301]  Christos Zerefos,et al.  Further evidence of important environmental information content in red-to-green ratios as depicted in paintings by great masters , 2013 .

[302]  Andrew Gettelman,et al.  Advanced two-moment bulk microphysics for global models. Part I: off-line tests and comparison with other schemes. , 2015 .

[303]  B. Samset,et al.  Anthropogenic aerosol forcing under the Shared Socioeconomic Pathways , 2019, Atmospheric Chemistry and Physics.

[304]  L. Lee,et al.  Aerosol and physical atmosphere model parameters are both important sources of uncertainty in aerosol ERF , 2018, Atmospheric Chemistry and Physics.

[305]  A. Blyth,et al.  The Influence of Entrainment and Mixing on the Initial Formation of Rain in a Warm Cumulus Cloud , 2013 .

[306]  Sonoyo Mukai,et al.  A study of the direct and indirect effects of aerosols using global satellite data sets of aerosol and cloud parameters , 2003 .

[307]  Brent N. Holben,et al.  An analysis of potential cloud artifacts in MODIS over ocean aerosol optical thickness products , 2005 .

[308]  S. Ghan,et al.  Challenges in constraining anthropogenic aerosol effects on cloud radiative forcing using present-day spatiotemporal variability , 2016, Proceedings of the National Academy of Sciences.

[309]  J. Delanoë,et al.  Ice crystal number concentration estimates from lidar–radar satellite remote sensing – Part 2: Controls on the ice crystal number concentration , 2018, Atmospheric Chemistry and Physics.

[310]  D. Shindell,et al.  Anthropogenic and Natural Radiative Forcing , 2014 .

[311]  Richard Siddans,et al.  Oxford-RAL Aerosol and Cloud (ORAC): aerosol retrievals from satellite radiometers , 2009 .

[312]  U. Lohmann,et al.  Constraining the total aerosol indirect effect in the LMDZ and ECHAM4 GCMs using MODIS satellite data , 2005 .

[313]  S. Kreidenweis,et al.  The susceptibility of ice formation in upper tropospheric clouds to insoluble aerosol components , 1997 .

[314]  Keith Beven,et al.  Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology , 2001 .

[315]  Joyce E. Penner,et al.  Soot and smoke aerosol may not warm climate , 2002 .

[316]  P. Stott,et al.  Uncertainties in the attribution of greenhouse gas warming and implications for climate prediction , 2016, 1606.05108.

[317]  Yoram J. Kaufman,et al.  Aerosol-cloud interaction-Misclassification of MODIS clouds in heavy aerosol , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[318]  Q. Min,et al.  The role of adiabaticity in the aerosol first indirect effect , 2007 .

[319]  S. Schwartz Determination of Earth’s Transient and Equilibrium Climate Sensitivities from Observations Over the Twentieth Century: Strong Dependence on Assumed Forcing , 2012, Surveys in Geophysics.

[320]  Alexander Smirnov,et al.  Maritime Aerosol Network as a component of Aerosol Robotic Network , 2009 .

[321]  M. Christensen,et al.  Volcano and Ship Tracks Indicate Excessive Aerosol‐Induced Cloud Water Increases in a Climate Model , 2017, Geophysical research letters.

[322]  W. Collins,et al.  An AeroCom initial assessment – optical properties in aerosol component modules of global models , 2018 .

[323]  W. Preece On Dust, Fogs, and Clouds , 1881, Nature.

[324]  T. Andrews,et al.  Small global-mean cooling due to volcanic radiative forcing , 2016, Climate Dynamics.

[325]  B. Stevens,et al.  Large‐eddy simulation of the transient and near‐equilibrium behavior of precipitating shallow convection , 2015 .

[326]  Meng Li,et al.  Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS) , 2017 .

[327]  S. Klein,et al.  Emergent Constraints for Cloud Feedbacks , 2015, Current Climate Change Reports.

[328]  J. Stone Climate change 1995: The science of climate change. Contribution of working group I to the second assessment report of the intergovernmental panel on climate change , 1997 .

[329]  Lorraine A. Remer,et al.  The invigoration of deep convective clouds over the Atlantic: aerosol effect, meteorology or retrieval artifact? , 2010 .

[330]  G. Feingold,et al.  On the reversibility of transitions between closed and open cellular convection , 2015 .

[331]  V. Ramaswamy,et al.  Anthropogenic Aerosols and the Weakening of the South Asian Summer Monsoon , 2011, Science.

[332]  Jenny M. Jones,et al.  Is Black Carbon an Unimportant Ice‐Nucleating Particle in Mixed‐Phase Clouds? , 2018, Journal of geophysical research. Atmospheres : JGR.

[333]  O. Dubovik,et al.  Clear-sky aerosol radiative forcing effects based on multi-site AERONET observations over Europe , 2007 .

[334]  T. Andrews,et al.  Understanding Rapid Adjustments to Diverse Forcing Agents , 2018, Geophysical research letters.

[335]  Steven J. Ghan,et al.  Aerosol Properties and Processes: A Path from Field and Laboratory Measurements to Global Climate Models , 2007 .

[336]  L. Remer,et al.  The Collection 6 MODIS aerosol products over land and ocean , 2013 .

[337]  B. Mayer,et al.  Intercomparison of shortwave radiative transfer schemes in global aerosol modeling: results from the AeroCom Radiative Transfer Experiment , 2012 .

[338]  S. Woods,et al.  On the Susceptibility of Cold Tropical Cirrus to Ice Nuclei Abundance , 2016 .

[339]  D. Tanré,et al.  Absorption of aerosols above clouds from POLDER/PARASOL measurements and estimation of their direct radiative effect , 2014 .

[340]  Aerosol Impacts on the Diurnal Cycle of Marine Stratocumulus , 2008 .

[341]  Philip J. Rasch,et al.  Toward a Minimal Representation of Aerosols in Climate Models: Comparative Decomposition of Aerosol Direct, Semidirect, and Indirect Radiative Forcing , 2012 .

[342]  Piers M. Forster,et al.  The semi‐direct aerosol effect: Impact of absorbing aerosols on marine stratocumulus , 2004 .

[343]  Veronika Eyring,et al.  Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization , 2015 .

[344]  J. Haywood,et al.  On summing the components of radiative forcing of climate change , 2001 .

[345]  A. Russell,et al.  Spatial and seasonal trends in biogenic secondary organic aerosol tracers and water-soluble organic carbon in the southeastern United States. , 2008, Environmental science & technology.

[346]  J. M. Mitchell,et al.  The Effect of Atmospheric Aerosols on Climate with Special Reference to Temperature near the Earth's Surface. , 1971 .

[347]  Xiaoye Zhang,et al.  The updated effective radiative forcing of major anthropogenic aerosols and their effects on global climate at present and in the future , 2016 .

[348]  M. Chin,et al.  Host model uncertainties in aerosol radiative forcing estimates: results from the AeroCom Prescribed intercomparison study , 2012 .

[349]  A. Stohl,et al.  Atmospheric removal times of the aerosol-bound radionuclides 137 Cs and 131 I measured after the Fukushima Dai-ichi nuclear accident - a constraint for air quality and climate models , 2012 .

[350]  Steven A. Ackerman,et al.  Cloud Detection with MODIS. Part II: Validation , 2008 .

[351]  R. Marchand,et al.  Constraining cloud lifetime effects of aerosols using A‐Train satellite observations , 2012 .