An Algorithm to Estimate the Hausdorff Dimension of Self-Affine Sets

Abstract We present an algorithm, based on Falconer's results in [4,6], to effectively estimate the Hausdorff dimension of self-affine sets in R n : For a given finite set of contracting non-singular linear maps T 1 ,…,T m , we obtain a decreasing sequence of computable real numbers converging to Falconer's dimension d. For almost all ( a 1 ,…, a m ) ϵ R mn , the number d is the Hausdorff dimension of the unique nonempty compact subset F satisfying F = U m i =1 ( T i ( F )+ a i ). Similarly, we obtain an increasing sequence of computable real numbers converging to Falconer's lower bound d - which is indeed a lower bound for the Hausdorff dimension of F if the sets T i (F) are disjoint for 1 ≤ i ≤ m.

[1]  William H. Paulsen Lower bounds for the Hausdorff dimension of n-dimensional self-affine sets , 1995 .

[2]  M. Urbanski,et al.  On the Hausdorff dimension of some fractal sets , 1989 .

[3]  Mark Pollicott,et al.  The dimensions of some self-affine limit sets in the plane and hyperbolic sets , 1994 .

[4]  Curtis T. McMullen,et al.  The Hausdorff dimension of general Sierpiński carpets , 1984, Nagoya Mathematical Journal.

[5]  Kenneth Falconer,et al.  The dimension of self-affine fractals II , 1992, Mathematical Proceedings of the Cambridge Philosophical Society.

[6]  Steven P. Lalley,et al.  Hausdorff and box dimensions of certain self-affine fractals , 1992 .

[7]  Michael F. Barnsley,et al.  Fractals everywhere , 1988 .

[8]  Kenneth Falconer,et al.  The Hausdorff dimension of self-affine fractals , 1988, Mathematical Proceedings of the Cambridge Philosophical Society.

[9]  Michael F. Barnsley,et al.  Hidden variable fractal interpolation functions , 1989 .

[10]  Tim Bedford,et al.  The box and Hausdorff dimension of self-affine sets , 1990, Ergodic Theory and Dynamical Systems.

[11]  Steven P. Lalley,et al.  Falconer's formula for the Hausdorff dimension of a self-affine set in R2 , 1995, Ergodic Theory and Dynamical Systems.

[12]  P. A. P. Moran,et al.  Additive functions of intervals and Hausdorff measure , 1946, Mathematical Proceedings of the Cambridge Philosophical Society.