Complexity of the Multilevel Critical Node Problem

In this work, we analyze a sequential game played in a graph called the Multilevel Critical Node problem (MCN). A defender and an attacker are the players of this game. The defender starts by preventively interdicting vertices (vaccination) from being attacked. Then, the attacker infects a subset of non-vaccinated vertices and, finally, the defender reacts with a protection strategy. We provide the first computational complexity results associated with MCN and its subgames. Moreover, by considering unitary, weighted, undirected and directed graphs, we clarify how the theoretical tractability or intractability of those problems vary. Our findings contribute with new NP-complete, $\Sigma_2^p$-complete and $\Sigma_3^p$-complete problems.

[1]  T. Ralphs,et al.  Interdiction and discrete bilevel linear programming , 2011 .

[2]  Kathleen D. Barnetson,et al.  The firebreak problem , 2019, Networks.

[3]  Hamamache Kheddouci,et al.  The Critical Node Detection Problem in networks: A survey , 2018, Comput. Sci. Rev..

[4]  Andrea Lodi,et al.  A polynomial algorithm for a continuous bilevel knapsack problem , 2018, Oper. Res. Lett..

[5]  Ronald L. Rivest,et al.  Introduction to Algorithms, third edition , 2009 .

[6]  Gerald G. Brown,et al.  Defending Critical Infrastructure , 2006, Interfaces.

[7]  Enrico Malizia,et al.  More Complexity Results about Reasoning over ( m )CP-nets , 2018, AAMAS.

[8]  Andrea Lodi,et al.  Multilevel Approaches for the Critical Node Problem , 2021, Oper. Res..

[9]  Gary MacGillivray,et al.  The firefighter problem for graphs of maximum degree three , 2007, Discret. Math..

[10]  Fabio Furini Casting light on the hidden bilevel combinatorial structure of the k-Vertex Separator problem , 2019 .

[11]  Gerhard J. Woeginger,et al.  A Study on the Computational Complexity of the Bilevel Knapsack Problem , 2014, SIAM J. Optim..

[12]  Panos M. Pardalos,et al.  Detecting critical nodes in sparse graphs , 2009, Comput. Oper. Res..

[13]  Gerhard J. Woeginger,et al.  The Computational Complexity of Multi-Level Bottleneck Programming Problems , 1998 .

[14]  Albert R. Meyer,et al.  Word problems requiring exponential time(Preliminary Report) , 1973, STOC.

[15]  Hao Yuan,et al.  Controlling Infection by Blocking Nodes and Links Simultaneously , 2011, WINE.

[16]  B. Johannes New Classes of Complete Problems for the Second Level of the Polynomial Hierarchy , 2011 .

[17]  Giuseppe Perelli,et al.  Binding Forms in First-Order Logic , 2015, CSL.

[18]  Jonathan Cole Smith,et al.  Exact interdiction models and algorithms for disconnecting networks via node deletions , 2012, Discret. Optim..

[19]  Celia Wrathall,et al.  Complete Sets and the Polynomial-Time Hierarchy , 1976, Theor. Comput. Sci..

[20]  R. Kevin Wood,et al.  Deterministic network interdiction , 1993 .

[21]  Marco Di Summa,et al.  Complexity of the critical node problem over trees , 2011, Comput. Oper. Res..

[22]  John M. Lewis,et al.  The Node-Deletion Problem for Hereditary Properties is NP-Complete , 1980, J. Comput. Syst. Sci..

[23]  Robert G. Jeroslow,et al.  The polynomial hierarchy and a simple model for competitive analysis , 1985, Math. Program..

[24]  Albert R. Meyer,et al.  The Equivalence Problem for Regular Expressions with Squaring Requires Exponential Space , 1972, SWAT.

[25]  Pablo San Segundo,et al.  The maximum clique interdiction problem , 2019, Eur. J. Oper. Res..

[26]  Marco Di Summa,et al.  Identifying critical nodes in undirected graphs: Complexity results and polynomial algorithms for the case of bounded treewidth , 2013, Discret. Appl. Math..

[27]  Panos M. Pardalos,et al.  Studying connectivity properties in human protein-protein interaction network in cancer pathway , 2012 .

[28]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[29]  Hamamache Kheddouci,et al.  A polynomial-time algorithm for finding critical nodes in bipartite permutation graphs , 2018, Optim. Lett..

[30]  Pablo Alvarez,et al.  Tri-level optimization models to defend critical infrastructure , 2007 .

[31]  Detlef Seese,et al.  Easy Problems for Tree-Decomposable Graphs , 1991, J. Algorithms.

[32]  Clayton W. Commander,et al.  Identifying Critical Nodes in Protein-Protein Interaction Networks , 2009 .

[33]  Charles Blair,et al.  The computational complexity of multi-level linear programs , 1992, Ann. Oper. Res..

[34]  Beatrice M. Ombuki-Berman,et al.  The bi-objective critical node detection problem , 2018, Eur. J. Oper. Res..

[35]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[36]  M. Schaefer,et al.  Completeness in the Polynomial-Time Hierarchy A Compendium ∗ , 2008 .