Explicit computational wave propagation in micro-heterogeneous media

Explicit time stepping schemes are popular for linear acoustic and elastic wave propagation due to their simple nature which does not require sophisticated solvers for the inversion of the stiffness matrices. However, explicit schemes are only stable if the time step size is bounded by the mesh size in space subject to the so-called CFL condition. In micro-heterogeneous media, this condition is typically prohibitively restrictive because spatial oscillations of the medium need to be resolved by the discretization in space. This paper presents a way to reduce the spatial complexity in such a setting and, hence, to enable a relaxation of the CFL condition. This is done using the Localized orthogonal decomposition method as a tool for numerical homogenization. A complete convergence analysis is presented with appropriate, weak regularity assumptions on the initial data.

[1]  Houman Owhadi,et al.  Numerical homogenization of the acoustic wave equations with a continuum of scales , 2006 .

[2]  Houman Owhadi,et al.  Gamblets for opening the complexity-bottleneck of implicit schemes for hyperbolic and parabolic ODEs/PDEs with rough coefficients , 2016, J. Comput. Phys..

[3]  Daniel Peterseim,et al.  Relaxing the CFL Condition for the Wave Equation on Adaptive Meshes , 2017, J. Sci. Comput..

[4]  Snorre H. Christiansen,et al.  Foundations of Finite Element Methods for Wave Equations of Maxwell Type , 2009, Applied Wave Mathematics.

[5]  Patrick Joly,et al.  Variational Methods for Time-Dependent Wave Propagation Problems , 2003 .

[6]  Daniel Peterseim,et al.  Localization of elliptic multiscale problems , 2011, Math. Comput..

[7]  D. Peterseim,et al.  Stable Multiscale Petrov-Galerkin Finite Element Method for High Frequency Acoustic Scattering , 2015, 1503.04948.

[8]  P. Oswald,et al.  On a BPX-preconditioner for P1 elements , 1993, Computing.

[9]  Jean-Luc Guermond,et al.  Finite element quasi-interpolation and best approximation , 2015, 1505.06931.

[10]  Daniel Peterseim,et al.  Eliminating the pollution effect in Helmholtz problems by local subscale correction , 2014, Math. Comput..

[11]  Olof Runborg,et al.  Analysis of Heterogeneous Multiscale Methods for Long Time Wave Propagation Problems , 2014, Multiscale Model. Simul..

[12]  E Weinan,et al.  The heterogeneous multi-scale method for homogenization problems , 2005 .

[13]  Daniel Peterseim,et al.  Oversampling for the Multiscale Finite Element Method , 2012, Multiscale Model. Simul..

[14]  Daniel Peterseim,et al.  Multiscale Petrov-Galerkin method for high-frequency heterogeneous Helmholtz equations , 2015, 1511.09244.

[15]  Björn Engquist,et al.  Multiscale Methods for Wave Propagation in Heterogeneous Media Over Long Time , 2012 .

[16]  Assyr Abdulle,et al.  Localized orthogonal decomposition method for the wave equation with a continuum of scales , 2014, Math. Comput..

[17]  Daniel Peterseim,et al.  Computational Multiscale Methods for Linear Heterogeneous Poroelasticity , 2018, Journal of Computational Mathematics.

[18]  H. Owhadi,et al.  Polyharmonic homogenization, rough polyharmonic splines and sparse super-localization , 2012, 1212.0812.

[19]  D. Peterseim Variational Multiscale Stabilization and the Exponential Decay of Fine-Scale Correctors , 2015, 1505.07611.

[20]  J. Graver,et al.  Graduate studies in mathematics , 1993 .

[21]  Ralf Kornhuber,et al.  Numerical Homogenization of Elliptic Multiscale Problems by Subspace Decomposition , 2016, Multiscale Model. Simul..

[22]  Marcus J. Grote,et al.  Finite Element Heterogeneous Multiscale Method for the Wave Equation , 2011, Multiscale Model. Simul..

[23]  Ralf Kornhuber,et al.  An analysis of a class of variational multiscale methods based on subspace decomposition , 2016, Math. Comput..

[24]  Susanne C. Brenner,et al.  Two-level additive Schwarz preconditioners for nonconforming finite element methods , 1996, Math. Comput..

[25]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[26]  Dietmar Gallistl,et al.  Multiscale Sub-grid Correction Method for Time-Harmonic High-Frequency Elastodynamics with Wave Number Explicit Bounds , 2016, Comput. Methods Appl. Math..

[27]  Jean E. Roberts,et al.  Mixed and hybrid finite element methods , 1987 .

[28]  Olof Runborg,et al.  Multi-scale methods for wave propagation in heterogeneous media , 2009, 0911.2638.

[29]  E Weinan,et al.  The Heterognous Multiscale Methods , 2003 .