Rapid increase of observed \DIC\ and pCO2 in the surface waters of the North Sea in the 2001-2011 decade ascribed to climate change superimposed by biological processes

[1]  A. Borges,et al.  The internal consistency of the North Sea carbonate system , 2016 .

[2]  Atul K. Jain,et al.  Global Carbon Budget 2015 , 2015 .

[3]  Nicholas R. Bates,et al.  A Time-Series View of Changing Ocean Chemistry Due to Ocean Uptake of Anthropogenic CO2 and Ocean Acidification , 2014 .

[4]  A. Borges,et al.  Variability of North Sea pH and CO2 in response to North Atlantic Oscillation forcing , 2013 .

[5]  A. Durand,et al.  Seasonal and latitudinal variability of the CO2 system in the western English Channel based on Voluntary Observing Ship (VOS) measurements , 2013 .

[6]  Ina Lorkowski,et al.  Comparison of two techniques to separate physical‐ and biological‐mediated pCO2 in seawater , 2013 .

[7]  Momme Butenschön,et al.  Modeling the carbon fluxes of the northwest European continental shelf: Validation and budgets , 2012 .

[8]  Ina Lorkowski,et al.  Interannual variability of carbon fluxes in the North Sea from 1970 to 2006-Competing effects of abiotic and biotic drivers on the gas-exchange of CO2 , 2012 .

[9]  K. Soetaert,et al.  Seasonal and long-term changes in pH in the Dutch coastal zone , 2010 .

[10]  A. Borges,et al.  Carbonate chemistry in the coastal zone responds more strongly to eutrophication than to ocean acidification , 2010 .

[11]  F. Millero,et al.  Effect of ocean acidification on the speciation of metals in seawater , 2009 .

[12]  M. L. Menn About uncertainties in practical salinity calculations , 2009 .

[13]  Are Olsen,et al.  Spatiotemporal variations of fCO2 in the North Sea , 2009 .

[14]  Are Olsen,et al.  Spatiotemporal variations of fCO 2 in the North Sea , 2009 .

[15]  Alberto Borges,et al.  Reconciling opposing views on carbon cycling in the coastal ocean: Continental shelves as sinks and near-shore ecosystems as sources of atmospheric CO2 , 2009 .

[16]  Scott C. Doney,et al.  Ocean acidification: the other CO2 problem. , 2009, Annual review of marine science.

[17]  J. Forester,et al.  Dynamic patterns and ecological impacts of declining ocean pH in a high-resolution multi-year dataset , 2008, Proceedings of the National Academy of Sciences.

[18]  S. Doney,et al.  Changes in the North Atlantic Oscillation influence CO2 uptake in the North Atlantic over the past 2 decades , 2008 .

[19]  A. Borges,et al.  Nitrogen and carbon cycling in the North Sea and exchange with the North Atlantic—A model study, Part II: Carbon budget and fluxes , 2008 .

[20]  S. Doney,et al.  Rapid decline of the CO2 buffering capacity in the North Sea and implications for the North Atlantic Ocean , 2007 .

[21]  A. Borges,et al.  High temporal coverage of carbon dioxide measurements in the Southern Bight of the North Sea , 2007 .

[22]  C. Heip,et al.  Impact of elevated CO2 on shellfish calcification , 2007 .

[23]  Alberto Borges,et al.  Assessment of the processes controlling the seasonal variations of dissolved inorganic carbon in the North Sea , 2006 .

[24]  Jorge L. Sarmiento,et al.  Ocean Biogeochemical Dynamics , 2006 .

[25]  A. Borges,et al.  Controls of the surface water partial pressure of CO2 in the North Sea , 2005 .

[26]  Y. Bozec,et al.  The continental shelf pump for CO2 in the North Sea - evidence from summer observation , 2005 .

[27]  Yann Bozec,et al.  Response to Comment on "Enhanced Open Ocean Storage of CO2 from Shelf Sea Pumping" , 2004, Science.

[28]  A. Borges,et al.  The Carbon budget of the North Sea , 2004 .

[29]  A. Watson,et al.  In situ evaluation of air‐sea gas exchange parameterizations using novel conservative and volatile tracers , 2000 .

[30]  B. Schneider,et al.  The seasonal cycle of carbon dioxide in Baltic Sea surface waters , 1999 .

[31]  S. Watanabe,et al.  Is there a “continental shelf pump” for the absorption of atmospheric CO2? , 1999 .

[32]  J. Gattuso,et al.  CARBON AND CARBONATE METABOLISM IN COASTAL AQUATIC ECOSYSTEMS , 1998 .

[33]  Jan O. Backhaus,et al.  Simulations of the north sea circulation, its variability, and its implementation as hydrodynamical forcing in ERSEM , 1995 .

[34]  Jorge L. Sarmiento,et al.  Redfield ratios of remineralization determined by nutrient data analysis , 1994 .

[35]  S. Kempe,et al.  Sinks and sources of CO2 in coastal seas - The North Sea , 1991 .

[36]  F. Millero,et al.  A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media , 1987 .

[37]  Takahashi Taro,et al.  Carbonate chemistry of the surface waters of the world oceans , 1980 .

[38]  C. Culberson,et al.  MEASUREMENT OF THE APPARENT DISSOCIATION CONSTANTS OF CARBONIC ACID IN SEAWATER AT ATMOSPHERIC PRESSURE1 , 1973 .

[39]  L. W. Winkler,et al.  Die Bestimmung des im Wasser gelösten Sauerstoffes , 1888 .

[40]  Y. Astor,et al.  A Time-Series View of Changing Surface Ocean Chemistry Due to Ocean Uptake of Anthropogenic Co2 and Ocean Acidification , 2014 .

[41]  Fabian Schwichtenberg Drivers of the carbonate system variability in the southern North Sea : River input, anaerobic alkalinity generation in the Wadden Sea and internal processes , 2013 .

[42]  T. Jickells,et al.  Spatial extent and historical context of North Sea oxygen depletion in August 2010 , 2012, Biogeochemistry.

[43]  Alberto Borges,et al.  Present day carbon dioxide fluxes in the coastal ocean and possible feedbacks under global change , 2011 .

[44]  A. Borges,et al.  Mechanisms controlling the air – sea CO 2 flux in the North , 2009 .

[45]  Andrew G. Dickson,et al.  Guide to best practices for ocean CO2 measurements , 2007 .

[46]  C. Sweeney,et al.  Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects , 2002 .