Non-conventional Ce:YAG nanostructures via urea complexes

[1]  F. Armetta,et al.  Synthesis of yttrium aluminum garnet nanoparticles in confined environment III: Cerium doping effect , 2018, Optical Materials.

[2]  Nur Amin Hoque,et al.  Synthesis of nanocrystalline photoluminescent mullite using sacrificial cotton wool and filter paper templates , 2017 .

[3]  M. Berrettoni,et al.  Synthesis of yttrium aluminum garnet nanoparticles in confined environment II: Role of the thermal treatment on the composition and microstructural evolution , 2017 .

[4]  Shun-Yi Jian,et al.  Effect of rotational speed of an electromagnetic stirrer on neodymium-doped yttrium aluminum garnet nanoparticle size during co-precipitation , 2017 .

[5]  Liming Shen,et al.  Photoluminescence properties of YAG:Ce 3+ ,Pr 3+ nano-sized phosphors synthesized by a modified co-precipitation method , 2017 .

[6]  Wentao Gan,et al.  Luminescent and Transparent Wood Composites Fabricated by Poly(methyl methacrylate) and γ-Fe2O3@YVO4:Eu3+ Nanoparticle Impregnation , 2017 .

[7]  G. Szekely,et al.  Experimental and theoretical investigation of the complexation of methacrylic acid and diisopropyl urea. , 2017, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[8]  M. Berrettoni,et al.  Synthesis of yttrium aluminum garnet nanoparticles in confined environment, and their characterization , 2016 .

[9]  Xiaowu He,et al.  Effects of local structure of Ce3+ ions on luminescent properties of Y3Al5O12:Ce nanoparticles , 2016, Scientific Reports.

[10]  Yuhua Wang,et al.  A novel Ce³⁺ activated Lu₃MgAl₃SiO₁₂ garnet phosphor for blue chip light-emitting diodes with excellent performance. , 2015, Dalton transactions.

[11]  C. Giordano,et al.  Easy access to Ni3N- and Ni-carbon nanocomposite catalysts. , 2014, Chemistry.

[12]  Daqin Chen,et al.  A new‐generation color converter for high‐power white LED: transparent Ce3+:YAG phosphor‐in‐glass , 2014 .

[13]  O. Paris,et al.  Recent Progress in the Replication of Hierarchical Biological Tissues , 2013 .

[14]  Jiale Huang,et al.  Co-precipitation synthesis and two-step sintering of YAG powders for transparent ceramics , 2013 .

[15]  C. Giordano,et al.  From paper to structured carbon electrodes by inkjet printing. , 2013, Angewandte Chemie.

[16]  C. Rüssel,et al.  Dendritic growth of yttrium aluminum garnet from an oxide melt in the system SiO2/Al2O3/Y2O3/CaO , 2012 .

[17]  M. Antonietti,et al.  Controlled synthesis of tantalum oxynitride and nitride nanoparticles. , 2011, Small.

[18]  U. Kynast,et al.  Efficiency issues in Ce3+ doped YAG nanocrystals , 2011 .

[19]  M. Antonietti,et al.  Synthesis of crystalline metal nitride and metal carbide nanostructures by sol-gel chemistry , 2011 .

[20]  M. Ma̧czka,et al.  IR and Raman spectroscopy study of YAG nanoceramics , 2010 .

[21]  A. Ng,et al.  ZnO nanostructures for optoelectronics: Material properties and device applications , 2010 .

[22]  Yong-Seog Kim,et al.  Solvothermally grown Ce3+-doped Y3Al5O12 colloidal nanocrystals: spectral variations and white LED characteristics , 2010 .

[23]  E. Caponetti,et al.  Synthesis of Nd:YAG nanopowder using the citrate method with microwave irradiation , 2010 .

[24]  E. Caponetti,et al.  Co-precipitation synthesis of Nd:YAG nanopowders II: The effect of Nd dopant addition on luminescence properties , 2009 .

[25]  M. Antonietti,et al.  Metal Nitride and Metal Carbide Nanoparticles by a Soft Urea Pathway , 2009 .

[26]  S. Enzo,et al.  Co-precipitation synthesis of neodymium-doped yttrium aluminium oxides nanopowders: quantitative phase investigation as a function of joint isothermal treatment conditions and neodymium content. , 2007 .

[27]  S. Enzo,et al.  Co-precipitation synthesis of Nd:YAG nano-powders: the effect of Nd dopant addition with thermal treatment , 2007 .

[28]  C. Leonelli,et al.  Preparation of Nd:YAG nanopowder in a confined environment. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[29]  T. Isobe,et al.  Tagging of avidin immobilized beads with biotinylated YAG:Ce3+ nanocrystal phosphor , 2006, Analytical and bioanalytical chemistry.

[30]  T. Isobe,et al.  Photoluminescence enhancement of PEG-modified YAG:Ce3+ nanocrystal phosphor prepared by glycothermal method. , 2005, The journal of physical chemistry. B.

[31]  S. Enzo,et al.  Luminescence Properties of Neodymium-Doped Yttrium Aluminium Garnet Obtained by the Co-Precipitation Method Combined with the Mechanical Process , 2005 .

[32]  P. Palmero,et al.  Influence of the co-precipitation temperature on phase evolution in yttrium-aluminium oxide materials , 2005 .

[33]  J. Colson,et al.  Thermal decomposition (pyrolysis) of urea in an open reaction vessel , 2004 .

[34]  Mingmei Wu,et al.  Tailored photoluminescence of YAG:Ce phosphor through various methods , 2004 .

[35]  R. Laine,et al.  Yttrium Aluminum Garnet Nanopowders Produced by Liquid-Feed Flame Spray Pyrolysis (LF-FSP) of Metalloorganic Precursors , 2004 .

[36]  R. Meltzer,et al.  Dependence of fluorescence lifetimes of Y2O3 : Eu3+ nanoparticles on the surrounding medium , 1999 .

[37]  Stefano Gialanella,et al.  X-ray diffraction characterization of heavily deformed metallic specimens , 1998 .

[38]  J. C. Taylor,et al.  Absorption contrast effects in the quantitative XRD analysis of powders by full multiphase profile refinement , 1991 .

[39]  R. G. Snyder,et al.  Analysis of the vibrational bandwidths of alkane–urea clathrates , 1989 .

[40]  S. Mizushima,et al.  Infrared Absorption Spectra of Inorganic Coördination Complexes. X. Studies of Some Metal-Urea Complexes1a,b , 1957 .

[41]  G. Brindley XLV. The effect of grain or particle Size on x-ray reflections from mixed powders and alloys, considered in relation to the quantitative determination of crystalline substances by x-ray methods , 1945 .

[42]  E. Teller,et al.  ADSORPTION OF GASES IN MULTIMOLECULAR LAYERS , 1938 .

[43]  J. Binner,et al.  Solvothermal nanoYAG synthesis: Mechanism and particle growth kinetics , 2016 .

[44]  A. Speghini,et al.  Optical spectroscopy of nanocrystalline cubic Y2O3:Er3+ obtained by combustion synthesis , 2000 .

[45]  R. Meltzer Dependence of fluorescence lifetimes of Y 2 O 3 : Eu 3 1 nanoparticles on the surrounding medium , 1999 .