Hybridization of Decomposition and Local Search for Multiobjective Optimization

Combining ideas from evolutionary algorithms, decomposition approaches, and Pareto local search, this paper suggests a simple yet efficient memetic algorithm for combinatorial multiobjective optimization problems: memetic algorithm based on decomposition (MOMAD). It decomposes a combinatorial multiobjective problem into a number of single objective optimization problems using an aggregation method. MOMAD evolves three populations: 1) population PL for recording the current solution to each subproblem; 2) population PP for storing starting solutions for Pareto local search; and 3) an external population PE for maintaining all the nondominated solutions found so far during the search. A problem-specific single objective heuristic can be applied to these subproblems to initialize the three populations. At each generation, a Pareto local search method is first applied to search a neighborhood of each solution in PP to update PL and PE. Then a single objective local search is applied to each perturbed solution in PL for improving PL and PE, and reinitializing PP. The procedure is repeated until a stopping condition is met. MOMAD provides a generic hybrid multiobjective algorithmic framework in which problem specific knowledge, well developed single objective local search and heuristics and Pareto local search methods can be hybridized. It is a population based iterative method and thus an anytime algorithm. Extensive experiments have been conducted in this paper to study MOMAD and compare it with some other state-of-the-art algorithms on the multiobjective traveling salesman problem and the multiobjective knapsack problem. The experimental results show that our proposed algorithm outperforms or performs similarly to the best so far heuristics on these two problems.

[1]  John K. Zao,et al.  Optimizing degree distributions in LT codes by using the multiobjective evolutionary algorithm based on decomposition , 2010, IEEE Congress on Evolutionary Computation.

[2]  Xin Yao,et al.  Decomposition-Based Memetic Algorithm for Multiobjective Capacitated Arc Routing Problem , 2011, IEEE Transactions on Evolutionary Computation.

[3]  Mauro Brunato,et al.  Reactive Search and Intelligent Optimization , 2008 .

[4]  Edward P. K. Tsang,et al.  Guided Pareto Local Search based frameworks for biobjective optimization , 2010, IEEE Congress on Evolutionary Computation.

[5]  Qingfu Zhang,et al.  MOEA/D-ACO: A Multiobjective Evolutionary Algorithm Using Decomposition and AntColony , 2013, IEEE Transactions on Cybernetics.

[6]  Antonio J. Nebro,et al.  A Study of the Parallelization of the Multi-Objective Metaheuristic MOEA/D , 2010, LION.

[7]  Qingfu Zhang,et al.  Decomposition-Based Multiobjective Evolutionary Algorithm With an Ensemble of Neighborhood Sizes , 2012, IEEE Transactions on Evolutionary Computation.

[8]  Li-Chen Fu,et al.  A two-phase evolutionary algorithm for multiobjective mining of classification rules , 2010, IEEE Congress on Evolutionary Computation.

[9]  Maria João Alves,et al.  MOTGA: A multiobjective Tchebycheff based genetic algorithm for the multidimensional knapsack problem , 2007, Comput. Oper. Res..

[10]  Tapabrata Ray,et al.  An adaptive constraint handling approach embedded MOEA/D , 2012, 2012 IEEE Congress on Evolutionary Computation.

[11]  Kalyanmoy Deb,et al.  A Hybrid Framework for Evolutionary Multi-Objective Optimization , 2013, IEEE Transactions on Evolutionary Computation.

[12]  Hisao Ishibuchi,et al.  Balance between genetic search and local search in memetic algorithms for multiobjective permutation flowshop scheduling , 2003, IEEE Trans. Evol. Comput..

[13]  Hisao Ishibuchi,et al.  A multi-objective genetic local search algorithm and its application to flowshop scheduling , 1998, IEEE Trans. Syst. Man Cybern. Part C.

[14]  Qingfu Zhang,et al.  MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition , 2007, IEEE Transactions on Evolutionary Computation.

[15]  Qingfu Zhang,et al.  Expensive Multiobjective Optimization by MOEA/D With Gaussian Process Model , 2010, IEEE Transactions on Evolutionary Computation.

[16]  John A. W. McCall,et al.  A Novel Smart Multi-Objective Particle Swarm Optimisation Using Decomposition , 2010, PPSN.

[17]  Mauro Brunato,et al.  Reactive Search Optimization: Learning While Optimizing , 2018, Handbook of Metaheuristics.

[18]  Qguhm -DVNLHZLF,et al.  On the performance of multiple objective genetic local search on the 0 / 1 knapsack problem . A comparative experiment , 2000 .

[19]  David Corne,et al.  The Pareto archived evolution strategy: a new baseline algorithm for Pareto multiobjective optimisation , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[20]  Roberto Battiti,et al.  Brain-Computer Evolutionary Multiobjective Optimization: A Genetic Algorithm Adapting to the Decision Maker , 2010, IEEE Trans. Evol. Comput..

[21]  Evripidis Bampis,et al.  A Dynasearch Neighborhood for the Bicriteria Traveling Salesman Problem , 2004, Metaheuristics for Multiobjective Optimisation.

[22]  E. Hughes Multiple single objective Pareto sampling , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[23]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[24]  David W. Corne,et al.  Multiple objective optimisation applied to route planning , 2011, GECCO '11.

[25]  Hisao Ishibuchi,et al.  Simultaneous use of different scalarizing functions in MOEA/D , 2010, GECCO '10.

[26]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[27]  DebK.,et al.  A fast and elitist multiobjective genetic algorithm , 2002 .

[28]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[29]  Andrzej Jaszkiewicz,et al.  Speed-up techniques for solving large-scale biobjective TSP , 2010, Comput. Oper. Res..

[30]  E. Polak,et al.  On Multicriteria Optimization , 1976 .

[31]  R. Battiti,et al.  Brain-Computer Evolutionary Multi-Objective Optimization ( BC-EMO ) : a genetic algorithm adapting to the decision maker , 2009 .

[32]  Swagatam Das,et al.  SYNTHESIS OF DIFFERENCE PATTERNS FOR MONOPULSE ANTENNAS WITH OPTIMAL COMBINATION OF ARRAY-SIZE AND NUMBER OF SUBARRAYS --- A MULTI-OBJECTIVE OPTIMIZATION APPROACH , 2010, Progress In Electromagnetics Research B.

[33]  Bernhard Sendhoff,et al.  Adapting Weighted Aggregation for Multiobjective Evolution Strategies , 2001, EMO.

[34]  Saúl Zapotecas Martínez,et al.  A direct local search mechanism for decomposition-based multi-objective evolutionary algorithms , 2012, 2012 IEEE Congress on Evolutionary Computation.

[35]  Ujjwal Maulik,et al.  A Simulated Annealing-Based Multiobjective Optimization Algorithm: AMOSA , 2008, IEEE Transactions on Evolutionary Computation.

[36]  Jacques Teghem,et al.  MEMOTS: a memetic algorithm integrating tabu search for combinatorial multiobjective optimization , 2008, RAIRO Oper. Res..

[37]  Y. Aneja,et al.  BICRITERIA TRANSPORTATION PROBLEM , 1979 .

[38]  Matthew Stewart,et al.  IEEE Transactions on Cybernetics , 2015, IEEE Transactions on Cybernetics.

[39]  Thomas Stützle,et al.  Design and analysis of stochastic local search for the multiobjective traveling salesman problem , 2009, Comput. Oper. Res..

[40]  Thomas Stützle,et al.  Pareto Local Optimum Sets in the Biobjective Traveling Salesman Problem: An Experimental Study , 2004, Metaheuristics for Multiobjective Optimisation.

[41]  E. L. Ulungu,et al.  MOSA method: a tool for solving multiobjective combinatorial optimization problems , 1999 .

[42]  William J. Cook,et al.  Chained Lin-Kernighan for Large Traveling Salesman Problems , 2003, INFORMS Journal on Computing.

[43]  Kay Chen Tan,et al.  A Hybrid Estimation of Distribution Algorithm with Decomposition for Solving the Multiobjective Multiple Traveling Salesman Problem , 2012, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[44]  Jacques Teghem,et al.  The multiobjective multidimensional knapsack problem: a survey and a new approach , 2010, Int. Trans. Oper. Res..

[45]  Thomas Stützle,et al.  A Two-Phase Local Search for the Biobjective Traveling Salesman Problem , 2003, EMO.

[46]  Jacques Teghem,et al.  Two-phase Pareto local search for the biobjective traveling salesman problem , 2010, J. Heuristics.

[47]  Qingfu Zhang,et al.  Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA/D and NSGA-II , 2009, IEEE Transactions on Evolutionary Computation.

[48]  Eckart Zitzler,et al.  Indicator-Based Selection in Multiobjective Search , 2004, PPSN.

[49]  Yun-Chia Liang,et al.  Multi-objective redundancy allocation optimization using a variable neighborhood search algorithm , 2010, J. Heuristics.

[50]  Brian W. Kernighan,et al.  An Effective Heuristic Algorithm for the Traveling-Salesman Problem , 1973, Oper. Res..

[51]  Francisco Herrera,et al.  A taxonomy and an empirical analysis of multiple objective ant colony optimization algorithms for the bi-criteria TSP , 2007, Eur. J. Oper. Res..

[52]  Qingfu Zhang,et al.  This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 1 RM-MEDA: A Regularity Model-Based Multiobjective Estimation of , 2022 .