Extreme plasma states in laser-governed vacuum breakdown

Triggering vacuum breakdown at laser facility is expected to provide rapid electron-positron pair production for studies in laboratory astrophysics and fundamental physics. However, the density of the produced plasma may cease to increase at a relativistic critical density, when the plasma becomes opaque. Here, we identify the opportunity of breaking this limit using optimal beam configuration of petawatt-class lasers. Tightly focused laser fields allow generating plasma in a small focal volume much less than λ3 and creating extreme plasma states in terms of density and produced currents. These states can be regarded to be a new object of nonlinear plasma physics. Using 3D QED-PIC simulations we demonstrate a possibility of reaching densities over 1025 cm−3, which is an order of magnitude higher than expected earlier. Controlling the process via initial target parameters provides an opportunity to reach the discovered plasma states at the upcoming laser facilities.

[1]  Impact of quantum effects on relativistic electron motion in a chaotic regime. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  K. Z. Hatsagortsyan,et al.  Extremely high-intensity laser interactions with fundamental quantum systems , 2011, 1111.3886.

[3]  A M Fedotov,et al.  Laser field absorption in self-generated electron-positron pair plasma. , 2010, Physical review letters.

[4]  Sergey Bastrakov,et al.  Generation of current sheets and giant quasistatic magnetic fields at the ionization of vacuum in extremely strong light fields , 2015 .

[5]  A M Fedotov,et al.  Limitations on the attainable intensity of high power lasers. , 2010, Physical review letters.

[6]  N. Narozhny,et al.  Effect of laser polarization on quantum electrodynamical cascading , 2014 .

[7]  A. Gonoskov,et al.  Ultrabright GeV Photon Source via Controlled Electromagnetic Cascades in Laser-Dipole Waves , 2016, 1610.06404.

[8]  Pengzhang,et al.  The effect of nonlinear quantum electrodynamics on relativistic transparency and laser absorption in ultra-relativistic plasmas , 2015 .

[9]  A. Bell,et al.  Possibility of prolific pair production with high-power lasers. , 2008, Physical review letters.

[10]  Georg Korn,et al.  Attractors and chaos of electron dynamics in electromagnetic standing waves , 2014, Physics Letters A.

[11]  G. Mourou,et al.  Pair creation in QED-strong pulsed laser fields interacting with electron beams. , 2010, Physical review letters.

[12]  T. Esirkepov,et al.  Exact charge conservation scheme for Particle-in-Cell simulation with an arbitrary form-factor , 2001 .

[13]  E. N. Nerush,et al.  Production and dynamics of positrons in ultrahigh intensity laser-foil interactions , 2016, 1606.08187.

[14]  Gerd Leuchs,et al.  Dipole pulse theory: Maximizing the field amplitude from 4 pi focused laser pulses , 2012 .

[15]  M. Marklund,et al.  Quantum Quenching of Radiation Losses in Short Laser Pulses. , 2016, Physical review letters.

[16]  K. Bennett,et al.  Modelling gamma-ray photon emission and pair production in high-intensity laser-matter interactions , 2013, J. Comput. Phys..

[17]  N. Narozhny,et al.  Radiation friction versus ponderomotive effect , 2014, 1408.0362.

[18]  J. G. Kirk,et al.  Pair production in counter-propagating laser beams , 2009, 0905.0987.

[19]  A. Piazza,et al.  Stochasticity effects in quantum radiation reaction. , 2013, Physical review letters.

[20]  Adrian C. Melissinos,et al.  Positron Production in Multiphoton Light-by-Light Scattering , 1997 .

[21]  S. S. Bulanov,et al.  Electromagnetic cascade in high-energy electron, positron, and photon interactions with intense laser pulses , 2013, 1306.1260.

[22]  C. E. Chen,et al.  High-efficiency γ-ray flash generation via multiple-laser scattering in ponderomotive potential well. , 2017, Physical review. E.

[23]  Colin N. Danson,et al.  Petawatt class lasers worldwide , 2015, High Power Laser Science and Engineering.

[24]  E. N. Nerush,et al.  Optimized multibeam configuration for observation of QED cascades , 2015, 1505.06680.

[25]  Anthony Bell,et al.  Monte Carlo calculations of pair production in high-intensity laser–plasma interactions , 2010, 1010.4584.

[26]  G. Mourou,et al.  Anomalous radiative trapping in laser fields of extreme intensity. , 2013, Physical review letters.

[27]  Matteo Tamburini,et al.  Laser-pulse-shape control of seeded QED cascades , 2015, Scientific Reports.

[28]  Dino A. Jaroszynski,et al.  Longitudinal and transverse cooling of relativistic electron beams in intense laser pulses , 2015, 1504.03480.

[29]  E. S. Weibel,et al.  Spontaneously Growing Transverse Waves in a Plasma Due to an Anisotropic Velocity Distribution , 1959 .

[30]  Thomas Grismayer,et al.  Electron–positron cascades in multiple-laser optical traps , 2016, 1609.08081.

[31]  Robin Marjoribanks,et al.  Plasma mirrors for ultrahigh-intensity optics , 2007 .

[32]  P. Shukla,et al.  Nonlinear collective effects in photon-photon and photon-plasma interactions , 2006, hep-ph/0602123.

[33]  R. Fonseca,et al.  Laser absorption via QED cascades in counter propagating laser pulses , 2018 .

[34]  B. Xie,et al.  QED cascade induced by a high-energy γ photon in a strong laser field , 2013, 1312.2317.

[35]  B. Shen,et al.  Radiation-reaction trapping of electrons in extreme laser fields. , 2014, Physical review letters.

[36]  A. Bell,et al.  Measuring quantum radiation reaction in laser–electron-beam collisions , 2014, Physical review letters.

[37]  E Wallin,et al.  Extended particle-in-cell schemes for physics in ultrastrong laser fields: Review and developments. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  S. V. Bulanov,et al.  Charged particle dynamics in multiple colliding electromagnetic waves. Survey of random walk, Lévy flights, limit circles, attractors and structurally determinate patterns , 2017 .

[39]  Ricardo A. Fonseca,et al.  Particle merging algorithm for PIC codes , 2014, Comput. Phys. Commun..

[40]  E. N. Nerush,et al.  QED cascades induced by circularly polarized laser fields , 2010, 1010.4528.

[41]  S. V. Bulanov,et al.  Schwinger limit attainability with extreme power lasers. , 2010, Physical review letters.

[42]  Sergey Bastrakov,et al.  Particle-in-Cell laser-plasma simulation on Xeon Phi coprocessors , 2015, Comput. Phys. Commun..

[43]  S. V. Bulanov,et al.  Electron dynamics and γ and e(-)e(+) production by colliding laser pulses. , 2015, Physical review. E.

[44]  V. S. Popov,et al.  Multiple colliding electromagnetic pulses: a way to lower the threshold of e+ e- pair production from vacuum. , 2010, Physical review letters.

[46]  R. Fonseca,et al.  Laser absorption via quantum electrodynamics cascades in counter propagating laser pulses , 2015, 1512.05174.

[47]  X. He,et al.  Brilliant petawatt gamma-ray pulse generation in quantum electrodynamic laser-plasma interaction , 2017, Scientific Reports.

[48]  R. Fonseca,et al.  Seeded QED cascades in counterpropagating laser pulses. , 2015, Physical review. E.