Classifying Large Graphs with Differential Privacy

[1]  Aaron Roth,et al.  The Algorithmic Foundations of Differential Privacy , 2014, Found. Trends Theor. Comput. Sci..

[2]  Samarth Swarup,et al.  Computational epidemiology as a challenge domain for multiagent systems , 2014, AAMAS.

[3]  Stephen E. Fienberg,et al.  Scalable privacy-preserving data sharing methodology for genome-wide association studies , 2014, J. Biomed. Informatics.

[4]  Devdatt P. Dubhashi,et al.  Entity disambiguation in anonymized graphs using graph kernels , 2013, CIKM.

[5]  Prateek Jain,et al.  Differentially Private Learning with Kernels , 2013, ICML.

[6]  Sofya Raskhodnikova,et al.  Analyzing Graphs with Node Differential Privacy , 2013, TCC.

[7]  Mohammad Al Hasan,et al.  GRAFT: an approximate graphlet counting algorithm for large graph analysis , 2012, CIKM.

[8]  Avrim Blum,et al.  Differentially private data analysis of social networks via restricted sensitivity , 2012, ITCS '13.

[9]  Nils M. Kriege,et al.  Subgraph Matching Kernels for Attributed Graphs , 2012, ICML.

[10]  Avrim Blum,et al.  The Johnson-Lindenstrauss Transform Itself Preserves Differential Privacy , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[11]  Yusuke Nakamura,et al.  IL-28B predicts response to chronic hepatitis C therapy--fine-mapping and replication study in Asian populations. , 2011, The Journal of general virology.

[12]  Kurt Mehlhorn,et al.  Weisfeiler-Lehman Graph Kernels , 2011, J. Mach. Learn. Res..

[13]  Ninghui Li,et al.  On sampling, anonymization, and differential privacy or, k-anonymization meets differential privacy , 2011, ASIACCS '12.

[14]  Behram F. T. Mistree,et al.  Gaydar: Facebook Friendships Expose Sexual Orientation , 2009, First Monday.

[15]  Ilya Mironov,et al.  Differentially private recommender systems: building privacy into the net , 2009, KDD.

[16]  Kurt Mehlhorn,et al.  Efficient graphlet kernels for large graph comparison , 2009, AISTATS.

[17]  Hans-Peter Kriegel,et al.  Metropolis Algorithms for Representative Subgraph Sampling , 2008, 2008 Eighth IEEE International Conference on Data Mining.

[18]  Jure Leskovec,et al.  Community Structure in Large Networks: Natural Cluster Sizes and the Absence of Large Well-Defined Clusters , 2008, Internet Math..

[19]  Karsten M. Borgwardt,et al.  Graph Kernels , 2008, J. Mach. Learn. Res..

[20]  Vitaly Shmatikov,et al.  Robust De-anonymization of Large Sparse Datasets , 2008, 2008 IEEE Symposium on Security and Privacy (sp 2008).

[21]  Sofya Raskhodnikova,et al.  What Can We Learn Privately? , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[22]  Sofya Raskhodnikova,et al.  Smooth sensitivity and sampling in private data analysis , 2007, STOC '07.

[23]  S. V. N. Vishwanathan,et al.  Fast Computation of Graph Kernels , 2006, NIPS.

[24]  Cynthia Dwork,et al.  Calibrating Noise to Sensitivity in Private Data Analysis , 2006, TCC.

[25]  Hans-Peter Kriegel,et al.  Shortest-path kernels on graphs , 2005, Fifth IEEE International Conference on Data Mining (ICDM'05).

[26]  Hisashi Kashima,et al.  Marginalized Kernels Between Labeled Graphs , 2003, ICML.

[27]  P. Dobson,et al.  Distinguishing enzyme structures from non-enzymes without alignments. , 2003, Journal of molecular biology.

[28]  Alex Smola,et al.  Learning with Kernels: support vector machines, regularization, optimization, and beyond , 2001, Adaptive computation and machine learning series.

[29]  N. Shervashidze Scalable graph kernels , 2012 .

[30]  Thomas Gärtner,et al.  On Graph Kernels: Hardness Results and Efficient Alternatives , 2003, COLT.