Optimal parallel algorithms for triangulated simple polygons

We provide optimal parallel solutions to several shortest path and visibility problems set in triangulated simple polygons. Let P be a triangulated simple polygon with n vertices, preprocessed to support shortest path queries. We can find the shortest path tree from any point inside P in O(log n) time using O(n/log n) processors. In the game bounds, we can preprocess P for shooting queries (a query can be answered in O(log n) time by a uniprocessor). Given a set S of m points inside P, we can find an implicit representation of the relative convex hull of S in O(log(nm)) time with O(m) processors. If the relative convex hull has k edges, we can explicitly produce these edges in O(log(nm)) time with O(k/log(nm)) processors. All of these algorithms are deterministic and use the CREW PRAM model.