Two mechanisms of vision in primates

ZusammenfassungVersuche an „split-brain“ Affen legten die Annahme nahe, daß die Wahrnehmung des Raumes und die Wahrnehmung der Identität von Gegenständen auf anatomisch getrennten Hirnmechanismen beruhen. In der vorliegenden Arbeit werden die Sehmechanismen des Gehirns untersucht, wobei von der Überlegung ausgegangen wird, daß hier zwei parallele Prozesse involviert sind: ein dezentrierter („ambient“), der die Wahrnehmung des den Körper umgebenden Raumes bestimmt, und ein zentrierter („focal“), durch welchen Details kleiner Raumflächen aufgefaßt werden.Bei Wirbeltieren wird eine detaillierte Topographie des körper-zentrierten Verhaltensraumes vom Auge zum Mittelhirn projiziert. Diese visuelle Topographie ist so mit dem bi-symmetrischen motorischen System integriert, daß sich eine Korrespondenz zwischen gesehenen Punkten und Bewegungszielen ergibt.Das phylogenetisch jüngere visuelle System des Vorderhirns befaßt sich fast ausschließlich mit dem zentralen Verhaltensraum; die corticale motorische Kontrolle befaßt sich entsprechend mit sehr spezifischen Handlungen im gleichen zentralen Gebiet.Anatomie und Hirnchirurgie liefern bei Primaten Hinweise auf einen visuellen Mechanismus im Mittelhirn, der für die dezentrierte Raumwahrnehmung eine Rolle spielt. Im Gegensatz dazu greift das auf Fovea, Parafovea und den visuellen Arealen des Cortex beruhende zentrierte Sehen Areale des umgebenden Feldes für eine eingehendere Inspektion heraus. Koordinierte Augenbewegungen sind direkter Ausdruck dieser Aufmerksamkeitszuwendung.Die Wechselwirkung zweier Mechanismen der visuellen Analyse kennzeichnet das Sehen bei allen aktiven Tieren. Die Komplexität des zentrierten Sehens zeigt sich auf allen Stufen des visuellen Systems von Primaten und in den Teilen des motorischen Systems, welche das Sehen ausrichten und die auf bestimmte visuelle Objekte gerichteten Handlungen steuern.SummaryExperiments with split-brain monkeys led me to consider that vision of space and vision of object identity may be subserved by anatomically distinct brain mechanisms. In this paper I examine the visual mechanisms of the brain to test the idea that vision involves two parallel processes; one ambient, determining space at large around the body, the other focal which examines detail in small areas of space.In vertebrates there is a projection from eye to midbrain of a detailed topography of body-centered behavioral space. This visual map is integrated with the bisymmetric motor system to obtain correspondence between visual loci and the goals for movements. The midbrain visual system governs basic vertebrate locomotor behavior.The phylogenetically more recent forebrain visual system looks almost exclusively at central behavioral space, and cortical motor control is likewise concerned with the formulation of highly specific acts in the same central territory.Anatomy and brain surgery reveal a midbrain visual mechanism in primates which plays a part in ambient space perception over the whole field. In contrast, focal vision served by the fovea and parafovea and by the cortical visual areas picks out areas in the ambient field for close attention. Conjugate eye movements are the most direct sign of this attention.The interplay between the two channels of visual analysis is a feature of vision in all active animals; but the complexity of focal vision in primates is revealed in their visual system at all levels, and in the parts of the motor system which orient vision, or which govern acts directed to specific visual objects.

[1]  Appetites and Aversions as Constituents of Instincts. , 1918, Proceedings of the National Academy of Sciences of the United States of America.

[2]  T. A. Jackson,et al.  AN EXPERIMENTAL ANALYSIS OF THE FUNCTIONS OF THE FRONTAL ASSOCIATION AREAS IN PRIMATES * 1 2 , 1935 .

[3]  C. Jacobsen FUNCTIONS OF FRONTAL ASSOCIATION AREA IN PRIMATES , 1935 .

[4]  S. A. Talbot,et al.  Physiological Studies on Neural Mechanisms of Visual Localization and Discrimination , 1941 .

[5]  T Henderson,et al.  THE VERTEBRATE EYE , 1943, The British journal of ophthalmology.

[6]  J. Apter,et al.  PROJECTION OF THE RETINA ON SUPERIOR COLLICULUS OF CATS , 1945 .

[7]  J. Apter,et al.  Eye movements following strychninization of the superior colliculus of cats. , 1946, Journal of neurophysiology.

[8]  W. R. Hess,et al.  Motorische Funktion des Tektal- und Tegmentalgebietes; pp. 1–26 , 1946 .

[9]  Lashley Ks,et al.  The mechanism of vision; effects of destroying the visual associative areas of the monkey. , 1948 .

[10]  D. Denny-Brown,et al.  The significance of perceptual rivalry resulting from parietal lesion. , 1952, Brain : a journal of neurology.

[11]  J. de Ajuriaguerra,et al.  Balint's syndrome (psychic paralysis of visual fixation) and its minor forms. , 1954, Brain : a journal of neurology.

[12]  K. Pribram,et al.  Visual discrimination performance following partial ablations of the temporal lobe. I. Ventral vs. lateral. , 1954, Journal of comparative and physiological psychology.

[13]  K. Pribram,et al.  Analysis of the effects of frontal lesions in monkey. I. Variations of delayed alternation. , 1955, Journal of comparative and physiological psychology.

[14]  K. Pribram,et al.  Analysis of the effects of frontal lesions in monkey. III. Object alternation. , 1956, Journal of comparative and physiological psychology.

[15]  K. Pribram,et al.  Analysis of the effects of frontal lesions in monkey. II. Variations of delayed response. , 1956, Journal of comparative and physiological psychology.

[16]  R. Myers,et al.  Function of corpus callosum in interocular transfer. , 1956, Brain : a journal of neurology.

[17]  J. Hyde,et al.  Brainsten-induced eye movements in cats. , 1957, The Journal of comparative neurology.

[18]  F. W. Weymouth Visual sensory units and the minimal angle of resolution. , 1958, American journal of ophthalmology.

[19]  K. Welch,et al.  Experimental production of unilateral neglect in monkeys. , 1958, Brain : a journal of neurology.

[20]  M. Mishkin,et al.  Comparison of the effects of inferotemporal and lateral occipital lesions on visually guided behavior in monkeys. , 1959, Journal of comparative and physiological psychology.

[21]  J. Downer Changes in visually guided behaviour following midsagittal division of optic chiasm and corpus callosum in monkey (Macaca mulatta). , 1959, Brain : a journal of neurology.

[22]  L. Blake The effect of lesions of the superior colliculus on brightness and pattern discriminations in the cat. , 1959, Journal of comparative and physiological psychology.

[23]  A. Luria,et al.  Disorders of "simultaneous perception" in a case of bilateral occipito-parietal brain injury. , 1959, Brain : a journal of neurology.

[24]  K. Pribram A Review of Theory in Physiological Psychology , 1960 .

[25]  M. B. Bender,et al.  BOOK REVIEWS , 2003 .

[26]  T. H. Meikle,et al.  Interocular Transfer of Brightness Discrimination in "Split-Brain" Cats , 1960, Science.

[27]  R. Sperry Cerebral Organization and Behavior: The split brain behaves in many respects like two separate brains, providing new research possibilities. , 1961, Science.

[28]  R. Doty,et al.  Functional Significance of the Topographical Aspects of the Retino-Cortical Projection , 1961 .

[29]  D. Whitteridge,et al.  The representation of the visual field on the cerebral cortex in monkeys , 1961, The Journal of physiology.

[30]  C. Rashbass,et al.  The relationship between saccadic and smooth tracking eye movements , 1961, The Journal of physiology.

[31]  R. Myers,et al.  Commissural connections between occipital lobes of the monkey , 1962, The Journal of comparative neurology.

[32]  R. Sperry,et al.  Some functional effects of sectioning the cerebral commissures in man* , 1962, Proceedings of the National Academy of Sciences.

[33]  M JACOBSON,et al.  The representation of the retina on the optic tectum of the frog. Correlation between retinotectal magnification factor and retinal ganglion cell count. , 1962, Quarterly journal of experimental physiology and cognate medical sciences.

[34]  G. L. Walls The evolutionary history of eye movements , 1962 .

[35]  C. Trevarthen Studies on visual learning in split-brain monkeys , 1962 .

[36]  M. Jacobson,et al.  THE PROJECTION OF THE BINOCULAR VISUAL FIELD ON THE OPTIC TECTA OF THE FROG , 1962 .

[37]  D. Denny-Brown,et al.  The Midbrain and Motor Integration , 1962, Proceedings of the Royal Society of Medicine.

[38]  C. Trevarthen Double Visual Learning in Split-Brain Monkeys , 1962, Science.

[39]  F. W. Weymouth,et al.  VISUAL SENSORY UNITS AND THE MINIMUM ANGLE OF RESOLUTION , 1963 .

[40]  T. J. Voneida Performance of a visual conditioned response in split-brain cats , 1963 .

[41]  J. Buettner‐Janusch Evolutionary and genetic biology of primates , 1963 .

[42]  L. Weiskrantz Contour discrimination in a young monkey with striate cortex ablation , 1963 .

[43]  J. Buettner‐Janusch Chapter 1 – An Introduction to the Primates , 1963 .

[44]  Vernon B. Mountcasle Interhemispheric relations and cerebral dominance , 1963 .

[45]  A. Bishop Chapter 12 – Use of the Hand in Lower Primates , 1964 .

[46]  T. Pasik,et al.  Optokinetic Nystagmus: An unlearned Response Altered by Section of Chiasma and Corpus Callosum in Monkeys , 1964, Nature.

[47]  C. Hamilton,et al.  Lateralization of Learning of Colour and Brightness Discriminations following Brain Bisection , 1964, Nature.

[48]  A. Cowey PROJECTION OF THE RETINA ON TO STRIATE AND PRESTRIATE CORTEX IN THE SQUIRREL MONKEY, SAIMIRI SCIUREUS. , 1964, Journal of neurophysiology.

[49]  Michael S. Gazzaniga CEREBRAL MECHANISMS INVOLVED IN IPSILATERAL EYE-HAND USE IN SPLIT-BRAIN MONKEYS. , 1964, Experimental neurology.

[50]  T. H. Meikle Failure of Interocular Transfer of Brightness Discrimination , 1964, Nature.

[51]  N. Mackworth Visual noise causes tunnel vision , 1965 .

[52]  L. Kruger,et al.  Organization of the visual projection upon the optic tectum of some freshwater fish , 1965, The Journal of comparative neurology.

[53]  A. Harris Eye movements of the dogfish Squalus acanthias L. , 1965, The Journal of experimental biology.

[54]  T H MEIKLE,et al.  THE ROLE OF THE SUPERIOR COLLICULUS IN VISUALLY GUIDED BEHAVIOR. , 1965, Experimental neurology.

[55]  M S Gazzaniga,et al.  Observations on visual perception after disconnexion of the cerebral hemispheres in man. , 1965, Brain : a journal of neurology.

[56]  M. Fischman,et al.  VISUAL INTENSITY DISCRIMINATION IN CATS AFTER SERIAL TECTAL AND CORTICAL LESIONS. , 1965, Journal of comparative and physiological psychology.

[57]  M. Mishkin,et al.  OCCIPITOTEMPORAL CORTICOCORTICAL CONNECTIONS IN THE RHESUS MONKEY. , 1965, Experimental neurology.

[58]  R. Sperry,et al.  Intermanual stereognostic size discrimination in split-brain monkeys. , 1966, Journal of comparative and physiological psychology.

[59]  A. Luria,et al.  Disturbances of Active Visual Perception with Lesions of the Frontal Lobes , 1966 .

[60]  C. Butter,et al.  Alterations in pattern equivalence following inferotemporal and lateral striate lesions in rhesus monkeys. , 1966, Journal of comparative and physiological psychology.

[61]  M. B. Bender,et al.  The superior colliculi and eye movements. An experimental study in the monkey. , 1966, Archives of neurology.

[62]  J. Sprague,et al.  Interaction of Cortex and Superior Colliculus in Mediation of Visually Guided Behavior in the Cat , 1966, Science.

[63]  M. Piercy Functions of the corpus callosum: Ciba Foundation Study Group No. 20. Edited by E.G. Ettlinger. J. and A. Churchill, London. 156 pp. 20s , 1966 .

[64]  L. Kruger,et al.  An electrophysiological study of the visual projection to the superior colliculus of the rat , 1966, The Journal of comparative neurology.

[65]  R. Hassler Comparative Anatomy of the Central Visual Systems in Day- and Night-active Primates , 1966 .

[66]  J. Gibson The Senses Considered As Perceptual Systems , 1967 .

[67]  A. L. I︠A︡rbus Eye Movements and Vision , 1967 .

[68]  L. Weiskrantz,et al.  Vision in Monkeys after Removal of the Striate Cortex , 1967, Nature.

[69]  L Weiskrantz,et al.  A Comparison of the Effects of Inferotemporal and Striate Cortex Lesions on the Visual Behaviour of Rhesus Monkeys , 1967, The Quarterly journal of experimental psychology.

[70]  A F Sanders,et al.  Some aspects of the selective process in the functional visual field. , 1970, Ergonomics.